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ABSTRACT 
We are interested in the problem of grouping families of non-

alignable protein sequences, such as circular-permutation, multi-

domain and tandem-repeat proteins, into clusters (classes) of 

related biological functions. For such sequences, whose numbers 

are constantly growing, the commonly used alignment-dependent 

approaches fail to yield biologically plausible results. To the best 

of our knowledge, no automatic process yet exists to carry out 

clustering on these proteins. Biologists often use more complex 

manual approaches based on secondary and tertiary structures, 

which require considerably more resources and time. 

In this paper, we develop a new similarity measure SMS, applied 

directly on non-aligned sequences. It allows us to develop a new 

and original alignment-free algorithm, named CLUSS, for 

clustering protein families based on a spectral decomposition 

approach inspired by the latent semantic analysis (LSA) widely 

used in information retrieval. CLUSS, utilized jointly with SMS, 

is effective on both alignable and non-alignable protein 

sequences. To show this, we have extensively tested our algorithm 

on different benchmark protein databases and families; we have 

also compared its performance with many alignment-dependent 

mainstream algorithms. The source code, the application server, 

and all experimental results are available at CLUSS web site 

http://prospectus.usherbrooke.ca/CLUSS/. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and Genetics; I.5.3 

[Pattern Recognition]: Clustering 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Clustering, Phylogenetic, Biological Function, Protein Sequences, 

Matching, Similarity Measure, Alignable, Non-Alignable 

1. INTRODUCTION 
With the rapid burgeoning of protein sequence data, the number 

of proteins for which no experimental data are available greatly 

exceeds the number of functionally characterized proteins. To 

predict a function for an uncharacterized protein, it is necessary 

not only to detect its similarities to proteins of known biochemical 

properties (i.e., to assign the unknown protein to a family), but 

also to adequately assess the differences in cases where similar 

proteins have different functions (i.e., to distinguish among 

subfamilies). One solution is to cluster each family into distinct 

subfamilies composed of functionally related proteins. 

Subfamilies resulting from clustering are easier to analyze 

experimentally. A subfamily member that attracts particular 

interest need to be compared only with the members of the same 

subfamily. A biological function can be attributed with high 

confidence to an uncharacterized protein, if a well-characterized 

protein within the same cluster is already known. Conversely, a 

biological function discovered for a newly characterized protein 

can be extended over all members of the same subfamily. 

Almost all automatic clustering approaches deal with only aligned 

protein sequences, which are performed via alignment algorithms 

such as the widely known MUSCLE [8], ClustalW [36], MAFFT 

[18] and T-Coffee [26], and many others. These algorithms often 

provide information on both conserved and mutated motifs, 

making it a good approach for measuring similarities between 

protein sequences. However, they have several serious limitations, 

including the following: 

 Dependence on the algorithm used. The results depend heavily 

on the algorithm selected and the parameters set by the user for 

the alignment algorithm (e.g., gap penalties). As far as easily-

alignable proteins are concerned, almost every existing alignment 

algorithm can yield good results. However, for protein sequences 

that are difficult to align, each alignment algorithm finds its own 

solution. Such variable results create ambiguities and can 

complicate the clustering task [25]. 

 Problem of non-alignable sequences. For the case of non-

alignable protein sequences (i.e., not yet definitively aligned), 

alignment-based algorithms do not succeed in producing 

biologically plausible results. This is due to the nature of the 

alignment approaches, which are based on the matching of 

subsequences in equivalent positions, while non-alignable 

proteins often have similar and conserved domains in non-

equivalent positions [25], such as circular-permutation, multi-

domain and tandem-repeat proteins 
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There are other known difficulties that limit the reliability of 

alignment, especially for the case of hard-to-align protein 

sequences, such as “repeat”, “substitution” and “gap” problems, 

which are well discussed by Higgins [15]. 

The number of protein sequences that are hard-to-align or not 

alignable at all is rapidly increasing. These proteins are frequently 

related to important biological phenomena, and their classification 

is of primary importance for the comprehension of these 

phenomena. One example is the group of 33 (/)8-barrel 

proteins belonging to the Glycoside Hydrolase (GH) family [35], 

which has an important role in the physiology of the alive cell, as 

discussed in [5,13]. A large number of these are still 

uncharacterized, since to date the process has been carried out 

manually with complicated approaches, such as those employed 

by Côté et al. [5] and Fukamizo et al. [13] for the characterization 

of the 33 (/)8-barrel proteins belonging to the GH [35] family. 

Most of the tools currently available are based on the alignment of 

protein sequences, making them inappropriate for this kind of 

proteins. 

Our aim in this paper is to develop a new approach to the 

biological interpretation of protein sequences, especially those 

which cause problems for alignment-dependent algorithms. Our 

work is an attempt to build an algorithm to help biologists 

perform analyses of certain kinds of protein sequences, which are 

now carried out almost manually. In the rest of the paper, we use 

the terms subfamily and cluster interchangeably. 

2. RELATED WORK 
The literature reports a number of algorithms for clustering 

protein databases, such as the widely used algorithm BLAST [1] 

and its improved versions Gaped-Blast and PSI-Blast [2], and 

SYSTERS [23], ProtClust [29] and ProtoMap [40] (see [32] for a 

review). These algorithms have been designed to deal with large 

sets of proteins by using various techniques to accelerate 

examination of the relationships between proteins. However, they 

are not very sensitive to the subtle differences among similar 

proteins. Consequently, these algorithms are not effective for 

clustering protein sequences in closely related families. On the 

other hand, more specific algorithms have also been developed, 

for instance, the widely cited algorithms BlastClust [3], which 

uses score-based single-linkage clustering, TRIBE-MCL [10], 

based on a Markov clustering approach, and gSPC [34], based on 

a method that is analogous to the treatment of an inhomogeneous 

ferromagnet in physics. Almost all of these algorithms are either 

based on sequence alignment or rely on alignment-dependent 

algorithms for computing pair-wise similarities. 

3. APPROACH OVERVIEW 
In this paper, we propose an efficient and original algorithm, 

CLUSS, for clustering protein families based on a new alignment-

free measure we propose for protein similarity. The novelty of 

CLUSS resides essentially in two features. First, CLUSS is 

applied directly to non-aligned sequences, thus eliminating the 

need for aligned sequences. Second, it adopts a new measure of 

similarity, directly exploiting the substitution matrices generally 

used to align protein sequences and showing a great sensitivity to 

the relations among similar and divergent protein sequences. 

CLUSS can be summarized as follows: 

Given F, a family containing a given number of proteins: 

1. Build a pairwise similarity matrix for the proteins in F using 

SMS our new similarity measure. 

2. Create a phylogenetic tree of the protein family F using our 

new clustering approach. 

3. Assign a co-similarity value to each node of the tree. 

4. Calculate a critical threshold for identifying subfamily 

branches, by computing the interclass inertia [7]. 

5. Collect each leaf from its subfamily branch into a distinct 

subfamily. 

4. SMS: SIMILARITY MEASURE 
Many approaches to measuring the similarity between protein 

sequences have been developed. Prominent among these are 

alignment-dependent approaches, including the well-known 

algorithm BLAST [1] and its improved versions Gaped-Blast and 

PSI-Blast [2], whose programs are available at [3], as well as 

several others such as the one introduced by Varré et al. [37] 

based on movements of segments, and the recent algorithm 

Scoredist introduced by Sonnhammer et al. [33] based on the 

logarithmic correction of observed divergence. These approaches 

often suffer from accuracy problems, especially for multi-domain 

proteins (in general case hard-to-align protein sequences). The 

similarity measures used in these approaches depend heavily on 

the alignability of the protein sequences. In many cases, 

alignment-free approaches can greatly improve protein 

comparison, especially for non-alignable protein sequences. These 

approaches have been reviewed in detail by several authors 

[30,31,9,38]. Their major drawback, in our opinion, is that they 

consider only the frequencies and lengths of similar regions 

within proteins and do not take into account the biological 

relationships that exist between amino acids. To correct this 

problem, some authors [9] have suggested the use of the Kimura 

correction method [22] or other types of correction, such as that 

of Felsenstein [12]. However, to obtain an acceptable 

phylogenetic tree, the approach described in [9] performs an 

iterative refinement including a profile-profile alignment at each 

iteration, which significantly increases its complexity. 

To overcome these difficulties of alignment-based approaches, we 

have developed SMS a new approach inspired by biological 

considerations and known observations related to protein structure 

and evolution. The goal is to make efficient use of the information 

contained in amino acid subsequences in the proteins, which leads 

to a better similarity measurement. The principal idea of our 

approach is to use a substitution matrix such as BLOSUM62 [14] 

or PAM250 [6] to measure the similarity between matched amino 

acids from the protein sequences being compared. 

4.1 Matching score 
In this section, we will use the symbol |.| to express the length of a 

sequence. Let X and Y be two protein sequences belonging to the 

protein family F. Let x and y be two identical subsequences 

belonging respectively to X and Y; we use x,y to represent the 

matched subsequence of x and y. We use l to represent the 

minimum length that x,y should have (i.e., we will be interested 

only in x,y whose length is at least l residues). We define El
XY, the 

key set of matched subsequences x,y for the definition of our 

similarity function, as follows (see Figure 1 for an example): 
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The expression (x  x) means that x is not included in x, either in 

terms of the composition of the subsequences or in terms of their 

respective positions in X. The matching set El
XY contains all the 

matched subsequences of maximal length between the sequences 

X and Y. It will be used to compute the matching score of the 

sequence pair. 

The formula El
XY adequately describes some known properties of 

polypeptides and proteins. First, protein motifs (i.e., series of 

defined residues) determine the tendency of the primary structure 

to adopt a particular secondary structure, a property exploited by 

several secondary-structure prediction algorithms. Such motifs 

can be as short as four residues (for instance those found in β-

turns), but the propensity to form an -helix or a β-sheet is 

usually defined by longer motifs. Second, our proposal to take 

into account multiple (i.e., ≥2) occurrences of a particular motif 

reflects the fact that sequence duplication is one of the most 

powerful mechanisms of gene and protein evolution, and if a 

motif is found twice (or more) in a protein it is more probable that 

it was acquired by duplication of a segment from a common 

ancestor than by acquisition from a distant ancestor. 

The construction of El
X,Y requires a CPU time proportional to 

|X|*|Y|. In practice, however, several optimizations are possible in 

the implementation, using encoding techniques to speed up this 

process. In our implementation of SMS, we used a technique that 

improved considerably the speed of the algorithm; we can 

summarize it as follows: 

By the property that all possible matched subsequences satisfy 

x,y ≥l, we know that each Γx,y in El
X,Y is an expansion of a 

matched subsequence of length l. Thus we first collect all the 

matched subsequences of length l, which takes linear time. 

Secondly, we expand each of the matched subsequences as much 

as possible on the both left and right sides. And finally, we select 

all the expanded matched sequences that are maximal according to 

the inclusion criterion. This technique is very efficient for 

reducing the execution time in practice. However, due to the 

variable lengths of the matched sequences, it may not be possible 

to reduce the worst-case complexity to a linear time. In the 

Results section, we provide a time comparison between our 

algorithm and several existing ones. 

 

Figure 1 shows an example of El
X,Y construction, with l=4. Let X 

and Y be two protein sequences, as illustrated. Among the matches 

shown in Figures 1.A and 1.B, the matched subsequence 1 of X1 

and Y1, will be added to the matching set E4
X,Y. Similarly, for 2 

the match of X1 and Y2, and 3 the match of X2 and Y1 will also be 

added to the matching set E4
XY. On the other hand, since X2  X3 

and Y2  Y3 , 4 the matched subsequence of X2 and Y2, will not be 

added to E4
XY. Instead, 5 the match of X3 and Y3, will be added to 

the set E4
XY, even though X3 overlaps with X2. 

Let M be a substitution matrix, and Γ a matched subsequence 

belonging to the matching set El
XY. We define a weight W(Γ) for 

the matched subsequence Γ, to quantify its importance compared 

to all the other subsequences of El
XY, as follows: 
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where [i] is the ith amino acid of the matched subsequence Γ, and 

W[Γ[i],Γ[i]] is the substitution score of this amino acid with itself. 

Here, in order to make our measure biologically plausible, we use 

the substitution concept to emphasize the relation which binds one 

amino acid with itself. The value of M[Γ[i],Γ[i]] (i.e., entries on 

the diagonal of the substitution matrix) estimates the rate at which 

each possible amino acid in a sequence remains unchanged over 

time; in other words, W(Γ) measures the conservability of the 

matched subsequence Γ in both X and Y, which is an important 

concept in biology that emphasizes the importance of each region 

of the protein sequence. 

Now we define S the matrix of matching scores, such as SX,Y is the 

matching score between X and Y two protein sequences belonging 

to the family F. The matching score SX,Y, understood as 

representing the substitution relation of the conserved regions in 

both sequences, is defined as follows: 
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Finally, the pairwise similarity matrix SMS of the protein family F 

is calculated by applying the Pearson’s correlation coefficient to 

the matrix S. 

4.2 Minimum length l 
Our aim is to detect and make use of the significant motifs best 

conserved during evolution and to minimize the influence of those 

motifs which occur by chance. This motivates one of the major 

biological features of our similarity measure, the inclusion of all 

long conserved subsequences (i.e., multiple occurrences) in the 

matching, since it is well known that the longer the subsequences, 

the smaller the chance of their being identical by chance, and vice 

versa. Here we make use of the theory developed by Karlin et al. 

in [21,19,20] to calculate, for each pair of sequences, the value of 

l, the minimum length of matched subsequences. According to 

theorem 1 in [19] we have: 
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Figure 1. Matching subsequences 



This formula calculates Kr,N, the expected length of the longest 

common word present by chance at least r times out of N m-letter 

sequences [19] (i.e., Seq1,…,SeqN), where pi
() is generally 

specified as the ith residue frequency of the observed th sequence, 

and r,N the asymptotic standard deviation of Kr,N. 

According to the conservative criterion proposed by Karlin et al. 

.[19], to measure the similarity between two protein sequences, 

we take into account all subsequences present 2 times out of the 2 

sequences which have a length that exceeds Kr,N by at least two 

standard deviations. In other words, for each pair of sequences, 

matched subsequences shorter than l=K2,2+2.2,2 (i.e., by fixing 

N=r=2) have a real chance of being similar as a result of random 

phenomena, while those with lengths greater than l=K2,2+2.2,2 are 

more likely to be conserved motifs. So, for each pair of protein 

sequences X and Y, we calculate a specific and appropriate value 

of l to calculate SX,Y the similarity between X and Y. 

5. CLUSS: CLUSTERING ALGORITHM 
CLUSS is composed of three main stages. The first one consists in 

building SMS, a pair-wise similarity matrix; the second, in 

building a phylogenetic tree according to this matrix, using a new 

clustering approach based on spectral decomposition; and the 

third, in identifying subfamily nodes from which leaves are 

grouped into subfamilies. 

5.1 Stage 1: Similarity matrix SMS 
Using one of the known substitution score matrices, such as 

BLOSUM62 [14] or PAM250 [6], we compute SMS, the NxN 

similarity matrix, where N is the number of sequences of the 

protein family F to be clustered, and SMSi,j is the similarity 

between the ith and the jth protein sequences of F. The 

construction of SMS takes CPU time proportional to N(N-1)T2/2, 

with T the typical sequence length of the N sequences. 

5.2 Stage 2: Phylogenetic tree 
To build the phylogenetic tree, we adopt a strategy inspired by the 

latent semantic analysis approach (LSA) [4], widely used in 

information retrieval, in which data are mapped to a vector space 

of reduced dimension (i.e., less than the number of data). By using 

a hierarchical strategy, and starting from the protein sequences, 

each of which is represented by a vector in a Euclidian space (i.e., 

step 1 of this stage), and considered as the root node of a (sub)tree 

containing only one node, we iteratively join a pair of root nodes 

in order to build a bigger subtree. At each iteration, a pair of root 

nodes is selected if they are the most similar root nodes (i.e., 

corresponding vectors have the largest cosine product). This 

process ends when there remains only one (sub)tree, which is the 

phylogenetic tree. The present stage is composed of three steps, as 

follows: 

5.2.1 Step1: Spectral decomposition of SMS 
The main idea is to perform a spectral decomposition of the 

similarity matrix SMS, to map the protein sequences onto a vector 

space, thereby making use of its advantages, of which the most 

important for us is the conservability of distances.  

Spectral decomposition of the square symmetric matrix SMS is 

done through Eigen decomposition [39]. We obtain: 
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where 1,…,p are the p non-negative eigenvalues of SMS and 

u1,…,up are the p eigenvectors corresponding to the p eigenvalues. 

For two vectors VX and VY, in N, representing the protein 

sequences X and Y, respectively, the Euclidian inner product is 

defined as: 
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When properly normalized (i.e., as proposed in section 4.1), the 

matrix SMS measures the correlation between protein sequences, 

which is similar to the role of the covariance matrix in principal 

component analysis (PCA). However, in the conventional PCA 

method, we must subtract the averages from the covariance 

matrix, which means that our method is not a PCA approach. 

5.2.2 Step 2: Building the tree 
The similarity between two root nodes referred to above is 

computed in the following way. At the beginning of the iteration, 

the similarity between any pair of nodes is initialized by the 

cosine product. We assign to each root node L (i.e., an individual 

leaf represents one protein sequence) a co-similarity cL according 

to its importance in F. 

By taking into account information about the neighborhood 

around each of the nodes L and R, the concept of co-similarity 

reflects the cluster compactness of all the sequences (leaf nodes) 

in the subtree. In fact, its value is inversely proportional to the 

within-cluster variance. As the subtree becomes larger, the co-

similarity tends to become smaller, which means that the 

sequences within the subtree become less similar and the 

difference (separation) between sequences in different clusters 

becomes less significant. In simpler terms, the co-similarity is a 

measure of the balance between two nodes.  

At the first iteration, all co-similarities are initialized to zero. Let 

L and R be the two most similar root nodes (i.e., cosine product of 

VL and VR is the largest) at a given iteration step; they are joined 

together to form a new subtree. Let P be the root node of the new 

subtree. P thus has two children, L and R, such that VP, the 

corresponding vector of the new root node P. P and VP have the 

following properties: 
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where VL, VR and VP are vectors corresponding respectively to the 

root nodes L, R, and P, while ||VL|| and ||VR|| are modules of VL and 

VR; and cP is the co-similarity of P. We assign a “length” value to 

each of the two branches connecting L and R to P, as follows: 
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These values are the estimate of the phylogenetic distance1 from 

either node L or R to their parent P in the tree. 

5.2.3 Step 3: Separating nodes 
The CLUSS algorithm makes use of a systematic method for 

deciding which subtrees to retain as a trade-off between searching 

for the highest co-similarity values and searching for the largest 

possible clusters. We first separate all the subtrees into two 

groups, one being the group of high co-similarity subtrees and the 

other the low co-similarity subtrees. This is done by sorting all 

possible subtrees in increasing order of co-similarity and 

computing a separation threshold according to the method based 

on the maximum interclass inertia [7]. 

5.3 Stage 3: Extracting clusters 
From the group of high co-similarity subtrees, we extract those 

that are largest. A high co-similarity subtree is largest if the 

following two conditions are satisfied: 1) it does not contain any 

low co-similarity subtree; and 2) if it is included in another high 

co-similarity subtree, the latter contains at least one low co-

similarity subtree. Each of these (largest) subtrees corresponds to 

a cluster and its leaves are then collected to form the 

corresponding cluster. 

6. RESULTS 
To illustrate its efficiency, we tested CLUSS extensively on a 

variety of protein datasets and databases and compared its 

performance with that of some mainstream clustering algorithms. 

We analyzed the results obtained for the different tests with 

support from the literature and functional annotations. Full data 

files and results cited in this section are available on CLUSS 

website. 

6.1 The clustering quality measure 
To highlight the functional characteristics and classifications of 

the clustered families, we introduce the Q-measure which 

quantifies the quality of a clustering by measuring the percentage 

of correctly clustered protein sequences based on their known 

functional annotations. This measure can be easily adapted to any 

protein sequence database. The Q-measure is defined as follows: 
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where N is the total number of clustered sequences, C is the 

number of clusters obtained, Pi is the largest number of obtained 

sequences in the ith cluster belonging to the same function group 

according to the known reference classification, and U is the 

number of orphan sequences. For the extreme case where each 

cluster contains one protein with all proteins classified as such, 

the Q-measure is 0, since C becomes equal to N, and each Pi the 

largest number of obtained sequences in the ith cluster is 1. 

                                                                 
1 This distance has no strict mathematical sense; it is merely a 

measure of the evolutionary distance between the nodes. It is 

closer to the notion of dissimilarity. 

6.2 COG and KOG databases 
To illustrate the efficiency of CLUSS in grouping protein 

sequences according to their functional annotation and biological 

classification, we performed extensive tests on the phylogenetic 

classification of proteins encoded in complete genomes, 

commonly named the Clusters of Orthologous Groups of proteins 

database [28]. As mentioned in the web site for the database, the 

COG (for unicellular organisms) and KOG (for eukaryotic 

organisms) clusters were delineated by comparing protein 

sequences encoded in complete genomes, representing major 

phylogenetic lineages. Each COG and KOG consists of individual 

proteins or groups of paralogs from at least 3 lineages and each 

thus corresponds to an ancient conserved domain. COG and KOG 

contain (to date) 192,987 and 112,920 classified protein 

sequences, respectively. 

To perform a biological and statistical evaluation of CLUSS, we 

randomly generated two sets of 1000 large subsets, one from the 

COG database and the other from the KOG database. Each subset 

contains between 47 and 1840 non-orphan protein sequences (i.e., 

each selected protein sequence has at least one similar from the 

same functional classification) from at least 10 distinct groups in 

the COG or KOG classification. We tested CLUSS on both sets of 

1000 subsets using each of the substitution matrices BLOSUM62 

[14] and PAM250 [6]. The average Q-measure value of the 

clusterings obtained for the COG classification is superior to 88% 

with a standard deviation of 5.61%, and the value for the KOG 

classification is superior to 80% with a standard deviation of 

9.50%. The results obtained show clearly that CLUSS is indeed 

effective in grouping sequences according to the known functional 

classification of COG and KOG databases. 

In the aim of comparing the efficiency of CLUSS to that of 

alignment-dependent clustering algorithms, we performed tests 

using CLUSS, BlastClust [3], TRIBE-MCL [10] and gSPC [34] 

on the COG and KOG classifications. In all of the tests performed, 

we used the widely known protein sequence comparison 

algorithm ClustalW [36] to calculate the similarity matrices used 

by TRIBE-MCL [10] and gSPC [34]. Due to the complexity of 

alignment, these tests were done on two sets of six randomly 

generated subsets, named COG1 to COG6 for COG and KOG1 to 

KOG6 for KOG. The obtained results are summarized in Table 1. 

The results in Table 1 show clearly that CLUSS obtained the best 

Q-measure compared to the other algorithms tested. Globally, the 

clusters obtained using our new algorithm CLUSS correspond 

better to the known characteristics of the biochemical activities 

and modular structures of the protein sequences according to 

COG and KOG classifications. 

The execution time reported in Table 1 for algorithm comparison, 

show clearly that the fastest algorithm is BlastClust [3], closely 

followed by our algorithm CLUSS, while TRIBE-MCL [10] and 

gSPC [34], which use ClustalW [36] as similarity measures, are 

much slower than BlastClust [3]. 

6.3 Glycoside Hydrolase family 2 (GH2) 
To show the performances of CLUSS with multi-domain protein 

families which are known to be hard-to-align and have not yet 

been definitively aligned, experimental tests were performed on 

316 proteins belonging to the Glycoside Hydrolases family 2 

(FASTA file is provided at CLUSS website) from the CAZy 



database [35]. The CAZy database describes the families of 

structurally-related catalytic and carbohydrate-binding modules or 

functional domains of enzymes that degrade, modify, or create 

glycosidic bonds. Among proteins included in CAZy database, the 

Glycoside Hydrolases are a widespread group of enzymes which 

hydrolyse the glycosidic bond between two or more carbohydrates 

or between a carbohydrate and a non-carbohydrate moiety. 

Among Glycoside Hydrolases families, the GH2 family, 

extensively studied at the biochemical level includes enzymes that 

perform five distinct hydrolytic reactions. Only complete protein 

sequences were retained for this study. In our experimentation, the 

GH2 proteins were subdivided into 28 subfamilies, organized in 

four main branches. Three branches correspond perfectly to 

enzymes with known biochemical activities. The first branch 

(subfamilies 1–7) includes enzymes with “β-galactosidase” 

activity from both Prokaryotes and Eukaryotes. The third branch 

(subfamilies 18 to 22) groups enzymes with “β-mannosidase” 

activity, while the fourth branch (subfamilies 23 to 28) includes 

“β-glucuronidases”. 

The clustering scheme obtained warrants further comment. The 

“orphan” subfamily 17 includes nineteen sequences labelled as 

“β-galactosidases” in databases. While the branch 1 “β-

galactosidases” are composed of five modules, known as the 

“sugar binding domain”, the “immunoglobulin-like β-sandwich”, 

the “(αβ)8-barrel”, the “β-gal small_N domain” and the “β-gal 

small_C domain”, the members of subfamily 17 lack the last two 

of these domains, which makes them more similar to “β-

mannosidases” and “β-glucuronidases”. These enzymes are 

distinct from those of branch 1 [11] and their separate localization 

is justified. 

The second branch is the most heterogeneous in terms of enzyme 

activity. However, most of the subfamilies (9 to 16) group 

enzymes that are annotated as “putative β-galactosidases” in 

databases. To the best of our knowledge, none of these proteins, 

identified through genome sequencing projects, have been 

characterized by biochemical techniques, so their enzymatic 

activity remains hypothetical. At the beginning of this branch, 

subfamily 8 groups enzymes characterized very recently: “exo-β-

glucosaminidases” [5,16] and “endo-β-mannosidases” [17]. 

Again, theses enzymes share only three modules with the enzymes 

from branches 1, 3 and 4. The close proximity among “exo-β-

glucosaminidases” and “endo-β-mannosidases” emerging from 

this work has not been described so far. Furthermore, subfamily 8 

includes closely related plant enzymes with “endo-β-

mannosidase” activity and bacterial enzymes produced by 

members of the genus Xanthomonas, including several plant 

pathogens. This could be an example of horizontal genetic transfer 

between members of these two taxa. 

Subfamily 22, also found at the beginning of a branch, has been 

recently analyzed by Côté et al. [5] and Fukamizo et al. [13], 

using structure-based sequence alignments and biochemical 

structure-function studies. It was shown that proteins from this 

subfamily have a different catalytic doublet and could recognize a 

new substrate not yet associated with GH2 members. 

Globally, the clustering result for the GH2 proteins corresponds 

well to the known characteristics of their biochemical activities 

and modular structures. The results obtained with the CLUSS 

algorithm were highly comparable with those of the more complex 

analysis performed by Côté et al. [5] and Fukamizo et al. [13] 

using clustering based on structure-guided alignments, an 

approach which necessitates prior knowledge of at least one 3D 

protein structure. 

6.4 Group of 33 (/)8-barrel proteins 
To show the performance of CLUSS with multi-domain protein 

families which are known to be hard to align and have not yet 

been definitively aligned, experimental tests were performed on 

the group of the 33 (/)8-barrel proteins, a group within 

Glycoside Hydrolases family 2 (GH2), from the CAZy database 

[35], studied recently by Côté et al. [5] and Fukamizo et al. [13]. 

The periodic character of the catalytic module known as “(/)8-

barrel” makes these sequences hard to align using classical 

alignment approaches. The difficulties in aligning these modules 

are comparable to the problems encountered with the alignment of 

tandem-repeats, which have been exhaustively discussed [15]. 

The FASTA file and clustering results of this subfamily are 

available on the CLUSS website. This group of 33 protein 

sequences includes “β-galactosidase”, “β-mannosidase”, “β-

glucuronidase” and “exo-β-D-glucosaminidase” enzymatic 

Table 1. Q-measure (Q-m) and execution time (in seconds) obtained on each COG and KOG subset. 

Protein sets and 

number of 

sequences 

CLUSS+SMS BlastClust MCL+Clustal SPC+Clustal 

Q-m Time Q-m Time Q-m Time Q-m Time 

COG1 (336) 96.73 116 81.25 10 92.26 332 93.45 340 

COG2 (214) 95.33 49 84.22 7 88.78 141 93.92 146 

COG3 (215) 93.06 74 87.50 14 83.68 273 73.26 285 

COG4 (355) 90.42 86 82.81 12 78.59 315 79.71 324 

COG5 (667) 98,08 667 94.00 105 63.46 5393 70.01 5338 

COG6 (309) 95.15 68 88.02 18 87.70 224 88.99 239 

KOG1 (363) 96.14 414 67.21 44 69.69 1168 76.85 1209 

KOG2 (425) 90.12 289 31.01 27 68.70 1208 53.64 1230 

KOG3 (411) 93.92 258 42.33 55 74.85 270 75.91 325 

KOG4 (360) 93.06 361 38.88 127 66.66 1123 67.22 1220 

KOG5 (326) 97.24 221 77.91 33 75.46 688 82.51 718 

KOG6 (590) 90,68 779 50.33 405 85.25 3782 66.94 4181 

 



activities, all extensively studied at the biochemical level. These 

sequences are multi-modular, with various types of modules, 

which complicate their alignment. Clustering such protein 

sequences using the alignment-dependent algorithms thus 

becomes problematic. In our experiments, we tested quite a few 

known algorithms to align the 33 protein sequences, such as 

MUSCLE [8], ClustalW [36], MAFFT [18], T-Coffee [26] etc. 

The alignment results of all these algorithms are in contradiction 

with those presented by Côté et al. [5] which in turn are supported 

by the structure-function studies of Fukamizo et al. [13]. This 

encouraged us to perform a clustering on this subfamily, to 

compare the behaviour of CLUSS with BlastClust [3], TRIBE-

MCL [10] and gSPC [34] in order to validate the use of CLUSS 

on the hard-to-align proteins. The experimental results with the 

different algorithms are summarized in Table 2, which shows the 

cluster correspondence of each of the sequences by approach 

used. An overview of the results is given below. The 

corresponding names and database entries of the 33 (/)8-barrel 

proteins group are indicated at CLUSS website. 

6.4.1 CLUSS results 
The 33 (/)8-barrel proteins were subdivided by CLUSS into 

five subfamilies, organized in five main branches (details in 

Figure 2). The first and the second branch correspond, 

respectively, to the first and the second clusters, which include 

enzymes with “β-mannosidase” activities; the third branch 

corresponds to the third cluster, which includes enzymes with “β-

glucuronidase” activities; the fourth branch corresponds to the 

forth cluster, which includes enzymes with “β-galactosidase” 

activities; the fifth branch corresponds to the fifth cluster, which 

includes enzymes with “exo-β-D-glucosaminidase” activities. 

 

6.4.2 BLAST results 
The 33 (/)8-barrel proteins were subdivided into five 

subfamilies. Almost all the enzymes were clustered in the 

appropriate clusters, except for seven proteins that were 

unclustered, among which we find the following well-classified 

enzymes: the “β-galactosidase” enzymes GaA, GaK and GaC; the 

“β-mannosidase” enzyme UnBc; and the “exo-β-D-

glucosaminidase” enzyme CsAo. 

 

6.4.3 Tribe-MCL results 
The 33 (/)8-barrel proteins were subdivided by TRIBE-MCL 

into two mixed subfamilies. We find the “β-mannosidase” 

enzymes MaA, MaC and MaT grouped in the “β-galactosidase” 

subfamily. Furthermore, the “exo-β-D-glucosaminidase” and “β-

glucuronidases” enzymes are grouped in the same subfamily. 

6.4.4 gSPC results 
The 33 (/)8-barrel proteins were subdivided by gSPC into three 

subfamilies. Almost all the enzymes were grouped in the 

appropriate subfamily, except for the “β-galactosidases” and the 

“β-glucuronidases” which were grouped in the same subfamily. 

Globally, the clustering of the 33 (/)8-barrel proteins generated 

by CLUSS corresponds better to the known characteristics of their 

biochemical activities and modular structures than do those 

yielded by the other algorithms tested. The results obtained with 

our new algorithm were highly comparable with those of the more 

complex, structure-based analysis performed by Côté et al. [5] 

and Fukamizo et al. [13]. 

 

Figure 2. Phylogenetic analysis of 33 (/)8-barrel group 

Table 2. Clustering results on 33 (/)8-barrel group 

Protein set Côté & al. CLUSS Blast MCL SPC 

UnA 1 1 1 1 1 

UnBv 1 1 1 1 1 

UnBc 1 1 / 1 1 

UnBm 1 1 1 1 1 

UnBp 1 1 1 1 1 

UnR 1 1 1 1 1 

MaA 2 2 2 2 1 

MaB 2 2 2 1 1 

MaH 2 2 2 1 1 

MaM 2 2 2 1 1 

MaC 2 2 2 2 1 

MaT 2 2 2 2 1 

GIC 3 3 3 2 2 

GIE 3 3 3 2 2 

GIH 3 3 3 2 2 

GIL 3 3 3 2 2 

GIM 3 3 3 2 2 

GIF 3 3 3 2 2 

GIS 3 3 3 2 2 

GaEco 4 4 4 2 2 

GaA 4 4 / 2 2 

GaK 4 4 / 2 2 

GaC 4 4 / 2 2 

GaEcl 4 4 4 2 2 

GaL 4 4 4 2 2 

CsAo 5 5 / 2 3 

CsS 5 5 5 2 3 

CsG 5 5 5 2 3 

CsM 5 5 5 2 3 

CsN 5 5 / 2 3 

CsAn 5 5 / 2 3 

CsH 5 5 5 2 3 

CsE 5 5 5 2 3 

 



7. DISCUSSION 
The new similarity measure presented in this paper makes 

possible to measure the similarity between protein sequences 

based solely on the conserved motifs. Its major advantage 

compared to the alignment-dependent approaches is that it gives 

significant results with protein sequences independent of their 

alignability, which allows it to be effective on both easy-to-align 

and hard-to-align protein families. This property is inherited by 

CLUSS, our new clustering algorithm, which uses it as its 

similarity measure. CLUSS used jointly with SMS is an effective 

clustering algorithm for protein sets with a restricted number of 

functions, which is the case of almost all protein families. It more 

accurately highlights the characteristics of the biochemical 

activities and modular structures of the clustered protein 

sequences than do the alignment-dependent algorithms. 

Our new clustering algorithm CLUSS gains several advantages by 

adopting an approach inspired by latent semantic analysis (LSA). 

The first is its use of high-dimensional space to automate the 

encoding and comparison of semantic relations. The second is its 

use of spectral decomposition, thereby benefiting from the global 

nature of this approach [27], since the Eigen decomposition used 

depends essentially on the globality of the similarity matrix SMS, 

and a change in one value in SMS makes changes in the entire 

Eigen decomposition. 

So far, our similarity measure has been based on pre-determined 

substitution matrices. A possible future development is to propose 

an approach to automatically compute the weights of the 

conserved motifs instead of relying on pre-calculated substitution 

scores. There is also a need to speed up the extraction of the 

conserved motifs and the clustering of the phylogenetic tree, to 

scale the algorithm on datasets that are much larger in size with 

many more biological functions. 

We believe that CLUSS is an effective method and tool for 

clustering protein sequences to meet the needs of biologists in 

terms of phylogenetic analysis and function prediction. In fact, 

CLUSS gives an efficient evolutionary representation of the 

phylogenetic relationships between protein sequences. This 

algorithm constitutes a significant new tool for the study of 

protein families, the annotation of newly sequenced genomes and 

the prediction of protein functions, especially for proteins with 

multi-domain structures whose alignment is not definitively 

established. Finally, the tool can also be easily adapted to cluster 

other types of genomic data. 
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