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Abstract—The rapid burgeoning of available protein data makes 

the use of clustering within families of proteins increasingly 

important, the challenge is to identify subfamilies of 

evolutionarily related sequences. This identification reveals 

phylogenetic relationships, which provide prior knowledge to 

help researchers understand biological phenomena. A good 

evolutionary model is essential to achieve a clustering that 

reflects the biological reality, and an accurate estimate of protein 

sequence similarity is crucial to the building of such a model. 

Most existing algorithms estimate this similarity using techniques 

that are not necessarily biologically plausible, especially for hard-

to-align sequences such as multi-domain, circular-permutation 

and tandem-repeats protein sequences, which cause many 

difficulties for the alignment-dependent algorithms. In this 

paper, we propose a novel similarity measure based on matching 

amino acid subsequences. This measure, named SMS for 

Substitution Matching Similarity, is especially designed for 

application to non-aligned protein sequences. It allows us to 

develop a new alignment-independent algorithm, named CLUSS, 

for clustering protein families. To the best of our knowledge, this 

is the first alignment-free algorithm for clustering protein 

sequences. Unlike other clustering algorithms, CLUSS is effective 
on both alignable and non-alignable protein families. 

Keywords-component; Protein sequences; Clustering; Non-

alignable; Biological function; Phylogeny 

I. INTRODUCTION 

With the rapid burgeoning of protein sequence data, the 
number of proteins for which no experimental data are 
available greatly exceeds the number of functionally 
characterized proteins. To predict a function for an 
uncharacterized protein, it is necessary not only to detect its 
similarities to proteins of known biochemical properties (i.e., to 
assign the unknown protein to a family), but also to adequately 
assess the differences in cases where similar proteins have 
different functions (i.e., to distinguish among subfamilies). One 
solution is to cluster each family into distinct subfamilies 
composed of functionally related proteins. Subfamilies 
resulting from clustering are easier to analyze experimentally. 
A subfamily member that attracts particular interest need be 
compared only with the members of the same subfamily. A 
biological function can be attributed with high confidence to an 
uncharacterized protein, if a well-characterized protein within 
the same cluster is already known. Conversely, a biological 

function discovered for a newly characterized protein can be 
extended over all members of the same subfamily. 

The literature reports many algorithms that can be used to 
build protein clustering databases, such as the widely used 
algorithm BLAST [1] and its improved versions Gapped-
BLAST and PSI-BLAST [2], as well as SYSTERS [3], 
ProtClust [4] and ProtoMap [5] (see [6] for a review). These 
algorithms have been designed to deal with large sets of 
proteins by using various techniques to accelerate examination 
of the relationships between proteins. However, they are not 
very sensitive to the subtle differences among similar proteins. 
Consequently, these algorithms are not effective for clustering 
protein sequences in closely related families. On the other 
hand, more specific algorithms have also been developed, for 
instance, the widely cited algorithms BlastClust [7], which uses 
score-based single-linkage clustering, TRIBE-MCL [8], based 
on the Markov cluster approach, and gSPC [9], based on a 
method that is analogous to the treatment of an inhomogeneous 
ferromagnet in physics. Almost all of these algorithms are 
either based on sequence alignment or rely on alignment-
dependent algorithms for computing the similarity. However, 
they have several serious limitations, including the following: 

 The results depend heavily on the algorithm selected 
and the parameters set by the user for the alignment 
algorithm (e.g., gap penalties). As far as easily 
alignable proteins are concerned, almost every existing 
alignment algorithm can yield good results. However, 
for protein sequences that are difficult to align, each 
alignment algorithm finds its own solution. Such 
variable results create ambiguities and can complicate 
the clustering task [10]. 

 For the case of non-alignable protein sequences (i.e., 
not yet definitively aligned and biologically approved) 
such as multi-domain, circular-permutation and 
tandem-repeats protein sequences, alignment-based 
algorithms do not succeed in producing biologically 
plausible results. This is due to the nature of the 
alignment approaches, which are based on the 
matching of subsequences in equivalent positions, 
while non-alignable proteins often have similar and 
conserved domains in non-equivalent positions [10]. 



There are other known difficulties that limit the reliability 
of alignment, especially for the case of hard-to-align protein 
sequences, such as ―repeat‖, ―substitution‖ and ―gap‖ 
problems, which are well discussed by Higgins [11]. 

In this paper, we propose an efficient algorithm, CLUSS, 
for clustering protein families based on SMS, which is a new 
measure we propose for protein similarity. The novelty of 
CLUSS resides essentially in two features. First, CLUSS is 
applied directly to non-aligned sequences, thus eliminating the 
need for sequence pre-alignment. Second, it adopts a new 
measure of similarity, directly exploiting the substitution 
matrices generally used to align protein sequences and showing 
a great sensitivity to the relations among similar and divergent 
protein sequences. 

II. THE NEW SIMILARITY MEASURE SMS 

Many approaches to measuring the similarity between 
protein sequences have been developed. Prominent among 
these are alignment-dependent approaches including the well-
known algorithm BLAST [1] and its improved versions 
Gapped-BLAST and PSI-BLAST [2], which the programs are 
available at [7], as well as several others such as the one 
introduced by Varré et al. [10] based on movements of 
segments, and the recent algorithm Scoredist introduced by 
Sonnhammer et al. [13] based on the logarithmic correction of 
observed divergence. These approaches often suffer from 
accuracy problems, especially for hard-to-align proteins 
sequences. The similarity measures used in these approaches 
depend heavily on the alignability of protein sequences as well 
as on the quality of the alignment, which in turn depend on the 
alignment algorithm used and its chosen parameters. In many 
cases, alignment-free approaches can greatly improve protein 
comparison, especially for non-alignable protein sequences. 
These approaches have been reviewed in detail by several 
authors [14],[15]. Their major drawback, in our opinion, is that 
they consider only the frequencies and lengths of similar 
regions within proteins and do not take into account the 
biological relationships that exist between amino acids. To 
correct this problem, some authors [15] have suggested the use 
of the Kimura correction method [16] or other types of 
corrections, such as that of Felsenstein [17]. However, to 
obtain an acceptable phylogenetic tree, the approach described 
in [15] performs an iterative refinement including a profile-
profile alignment at each iteration, which significantly 
increases its complexity. Considering this, we have developed 
a new approach mainly motivated by biological considerations 
and known observations related to protein structure and 
evolution. The goal is to make efficient use of the information 
contained in amino acid subsequences in the proteins, which 
leads to a better similarity measurement. The principal idea of 
this approach is to use a substitution matrix such as 
BLOSUM62 [18] or PAM250 [19] to measure the similarity 
between matched amino acids from the protein sequences 
being compared. 

In this section, we will use the symbol |.| to express the 
length of a sequence. Let X and Y be two protein sequences 
belonging to the protein family F. Let x and y be two identical 

subsequences belonging respectively to X and Y; we use Γ𝑥,𝑦  to 

represent the matched subsequence of x and y. We use l to 

represent the minimum length that Γ𝑥,𝑦  should have; i.e., we 

will be interested only in Γ𝑥,𝑦  whose length is at least l 

residues. We define 𝐸𝑋,𝑌
𝑙 , the key set of matched subsequences 

Γ𝑥,𝑦  for the definition of our similarity function, as follows: 

EX,Y
l

=  Γx,y  
 Γx,y ≥l ,

 ∀Γ𝑥′,y'∈EX,Y
l  ⋀ Γ𝑥′,y'≠Γx,y ⟹ 𝑥′⊄x ⋁ y'⊄y 

   (1) 

The symbols x’ and y’ in the formula are simply used as 

variables in the same way as x and y. The expression (.  .) 
means that the first element is not included in the second one, 
either in terms of the composition of the subsequences or in 

terms of their respective positions in X. The matching set 𝐸𝑋,𝑌
𝑙  

will be used to compute the matching score of the sequence 
pair. What follows is an explanation of what the Formula (1) 
means: 

  Γ𝑥,𝑦  ≥ 𝑙 : Means that each of the matched 

subsequences Γ𝑥 ,𝑦  must have at least the minimum 

length l. 

  ∀Γ𝑥′,y'∈EX,Y
l  ⋀ Γ𝑥′,y'≠Γx,y ⟹ 𝑥′⊄x ⋁ y'⊄y : Means 

that for any matched subsequence Γ𝑥′,𝑦′  belonging to 

𝐸𝑋,𝑌
𝑙 , Γ𝑥′,𝑦′ and Γ𝑥,𝑦  being different implies that Γ𝑥′,𝑦′ is 

not included in Γ𝑥,𝑦  according to the partial order 

induced by set inclusion. In other words, each of the 

Γ𝑥,𝑦  in 𝐸𝑋,𝑌
𝑙  is maximal. 

To summarize, the formula means that the matching set 

𝐸𝑋,𝑌
𝑙  contains all the matched subsequences Γ𝑥,𝑦  of maximal 

length (i.e., at least l) between the sequences X and Y. The use 
of logic expressions in the formula makes it very concise and 
easy to transform into conditions in a computer program. 

The formula of 𝐸𝑋,𝑌
𝑙  adequately describes some known 

properties of polypeptides and proteins. First, protein motifs 
(i.e., series of defined residues) determine the tendency of the 
primary structure to adopt a particular secondary structure, a 
property exploited by several secondary-structure prediction 
algorithms. Such motifs can be as short as four residues (for 
instance those found in β-turns), but the propensity to form an 

-helix or a β-sheet is usually defined by longer motifs. 
Second, our proposal to take into account multiple (i.e., ≥ 2 
residues) occurrences of a particular motif reflects the fact that 
sequence duplication is one of the most powerful mechanisms 
of gene and protein evolution, and if a motif is found twice (or 
more) in a protein it is more probable that it was acquired by 
duplication of a segment from a common ancestor than by 
acquisition from a distant ancestor. 

The construction of 𝐸𝑋,𝑌
𝑙  requires a CPU time proportional 

to |X|*|Y|. In practice, however, several optimizations are 
possible in the implementation, using encoding techniques to 
speed up this process. In our implementation of SMS, we used 
a technique that improved considerably the speed of the 
algorithm; we can summarize it as follows: 

By the property that all possible matched subsequences 

satisfy Γ𝑥,𝑦 ≥l, we know that each Γ𝑥,𝑦  in 𝐸𝑋,𝑌
𝑙  is an expansion 

of a matched subsequence of length l. Thus, we first collect all 



the matched subsequences of length l, which takes linear time. 
Secondly, we expand each of the matched subsequences as 
much as possible on the both left and right sides. Finally, we 
select all the expanded matched sequences that are maximal 
according to the inclusion criterion. This technique is very 
efficient for reducing the execution time in practice. However, 
due to the variable lengths of the matched sequences, it may 
not be possible to reduce the worst-case complexity to a linear 
time. In the Results section, we provide a time comparison 
between our algorithm and several existing ones. 

Let M be a substitution matrix, and Γ a matched 

subsequence belonging to the matching set 𝐸𝑋,𝑌
𝑙 . We define a 

weight W(Γ) for the matched subsequence Γ, to quantify its 

importance compared to all the other subsequences of 𝐸𝑋,𝑌
𝑙 , as 

follows: 

𝑊 Γ =  M Γ i ,Γ i  

 Γ 

i=1

                          (2) 

Where Γ[i] is the ith amino acid of the matched subsequence 
Γ, and W[Γ[i], Γ[i]] is the substitution score of this amino acid 
with itself. Here, in order to make our measure biologically 
plausible, we use the substitution concept to emphasize the 
relation that binds one amino acid with itself. The value of 
M[Γ[i], Γ[i]] (i.e., within the diagonal of the substitution 
matrix) estimate the rate at which each possible amino acid in a 
sequence keep unchanged over time. For the pair of sequences 
X and Y, we define the matching score sX,Y, understood as 
representing the substitution relation of the conserved regions 
in both sequences, as follows: 

sX,Y=

 W Γ 
Γ∈EX,Y

l

max  X , Y  
                                      3  

Finally, the pairwise similarity matrix S is calculated by 
applying the Pearson’s correlation coefficient to the matrix s, 
as follows: 

SX,Y=
  sX,i-sX   sY,i-sY  N

i=1

   sX,i-sX  
2N

i=1
   sY,i-sY  

2N
i=1

               (4) 

Where SX,Y is the similarity measure between the protein 

sequences X and Y, and 𝑠𝑋,𝑖  and 𝑠𝑌,𝑖  are the matching scores 

between the protein sequence i with X and i with Y, and 𝑠𝑋    and 

𝑠𝑌  are the means of 𝑠𝑋,𝑖  and 𝑠𝑌,𝑖  for all i values, respectively. 

Our aim is to detect and make use of the significant motifs 
best conserved during evolution and to minimize the influence 
of those motifs that occur by chance. This motivates one of the 
major biological features of our similarity measure, the 
inclusion of all long conserved subsequences (i.e., multiple 
occurrences) in the matching, since it is well known that the 
longer the subsequences, the smaller the chance of their being 
identical by chance, and vice versa. Here we make use of the 
theory developed by Karlin et al. [20] to calculate, for each pair 
of sequences, the value of l, the minimum length of matched 

subsequences. According to theorem 1 of Karlin et al. in [20] 
we calculate Kr,N as follows: 

Kr,N=
log n  Q

1
 ,⋯, Q

N
  + log 𝜆 1-λ +0.577

- log 𝜆
            (5) 

n  Q
1
 ,⋯, Q

N
  =    Q

iν
 

r

ν=11≤i1≤⋯≤ir≤N

                  (6) 

𝜆= max
1≤i1≤⋯≤ir≤N

   p
i

 𝜈𝑗  
r

j=1

20

i=1

                         (7) 

These formulas calculate Kr,N , the expected length of the 
longest common word present by chance at least r times out of 

N m-letter sequences [20] (i.e., Q1,…,QN), where pi
() is 

generally specified as the ith residue frequency of the observed 

th sequence. 

According to the conservative criterion proposed by Karlin 
et al. [20], to measure the similarity between two protein 
sequences, we take into account in the calculation of our 
similarity measure SMS all subsequences present 2 times (i.e., 
r=2) out of the 2 sequences (i.e., N=2) which have a length that 
exceeds K2,2 by at least two standard deviations. So, for each 
pair of protein sequences X and Y, we calculate a specific and 
appropriate value of l to calculate SX,Y the similarity measure. 

III. THE NEW CLUSTERING ALGORITHM CLUSS 

CLUSS is composed of three main stages. The first one 
consists in building a pairwise similarity matrix based on our 
new similarity measure SMS; the second, in building a 
phylogenetic tree according to the similarity matrix, using a 
hierarchical approach; and the third, in identifying subfamily 
nodes from which leaves are grouped into subfamilies. 

A. Stage 1: Similarity matrix 

Using one of the known substitution score matrices, such as 
BLOSUM62 [18] or PAM250 [19], and SMS our new 
similarity measure, we compute S, the (N x N) pairwise 
similarity matrix, where N is the number of sequences of the 
protein family F to be clustered, and Si,j is the similarity 
measure between the ith and the jth protein sequences of F. The 
construction of S takes CPU time proportional to N(N-1)T2/2, 
with T the typical sequence length of the N sequences. 

B. Stage 2: Phylogenetic tree 

To build the phylogenetic tree, we have adopted a classical 
hierarchical approach. Starting from the protein sequences, 
each of which is considered as the root node of a subtree 
containing only one node, we iteratively join a pair of root 
nodes in order to build a bigger subtree. At each iteration, a 
pair of root nodes is selected if they are the most similar root 
nodes in terms of a similarity measure derived from the above 
similarity matrix S. This process ends when there remains only 
one subtree, which is the phylogenetic tree.  

The similarity between two root nodes referred to above is 
computed in the following way. At the beginning of the 



iteration, the similarity between any pair of nodes is initialized 
by the similarity matrix computed in Stage 1 (i.e., according to 
SMS). Let L and R be two nearest root nodes at a given 
iteration step; they are joined together to form a new subtree. 
Let P be the root node of the new subtree. P thus has two 
children, L and R. The similarity between the new root node P 
and any other root node K is defined as a weighted average of 
the similarity between the children of P and the node K: 

SP,K=
dLSL,K+dRSR,K

dL+dR

                                (8) 

Where SL,K and SR,K are the similarity values between the 
node K with L and K with R before the joining, and dL and dR 
are the numbers of leaves in the subtree rooted at L and R, 
respectively. Note that in order to keep the notation simple, SP,K 
is retained here to represent the similarity between any pair of 
nodes that do not have any descendant relationships in the 
phylogenetic tree. 

C. Stage 3: Cluster extraction 

Given F, a family of N protein sequences, after computing 
their similarity matrix and phylogenetic tree, CLUSS locates 
subfamily nodes in this tree using a procedure Ward’s [21],[22] 
approach. The main idea is to extract from the phylogenetic 
tree a number of subtrees, each of which corresponds to a 
cluster, while optimizing a validation criterion. The criterion is 
in fact a trade-off between the within-cluster compactness and 
the between-cluster separation [23]. The different steps are 
summarized as follows: 

1) Step 1 (Computing the weight of each node): First, each 

leaf node is considered as a subtree in the phylogenetic tree. 

We assign to each subtree L (i.e., an individual leaf represents 

one protein sequence) a weight WL according to its importance 

in F. WL depends on the number and closeness of the protein 

sequences that are in fact similar to L, and is thus intended to 

measure how well F is represented by this particular sequence. 

For this purpose, we make use of the Thompson [24] method 

in the definition of WL: 

WL=  
DParent i ,i

dParent i 
i∈ branch L→P - P  

                            (9) 

Where P is the root of the phylogenetic tree, L a leaf in this 

tree, branch(LP)-{P} the subset of nodes on the branch from 
L to P excluding P, Parent(i) the parent of the node i, DParent(i),i 
is the length of the branch connecting the node i to its parent 
(as defined in the previous phase), and dParent(i) the number of 
leaves in the subtree rooted at the parent of i. According to this 
definition, the value of WL is small if L is very representative 
and is large if L is not very representative. Iteratively, we 
assign to each internal subtree P the weight value WP equal to 
the sum of the weights of its children WL+WR. We estimate the 
phylogenetic distance (i.e., this distance has no strict 
mathematical sense; it is merely a measure of the evolutionary 
distance between the nodes. It is closer to the notion of 
dissimilarity) from a node P to its children L and R as follows: 

DL,P=SL,R

WR

WL+WR

                               (10) 

DR,P=SL,R

WL

WL+WR

                               (11) 

2) Step 2 (Computing co-similarity for all internal nodes): 

Iteratively, until the root of the phylogenetic tree is reached, 

we assign to the subtree rooted at each non-leaf node P the co-

similarity value CP (between its two child nodes), which is 

calculated according to the generalized Ward dissimilarity 

formula [21],[22] introduced by Batagelj [25], as follows: 

CP=SL,R

WLWR

WL+WR

                                (12) 

Where WL and WR are the weights of L and R, respectively, 
and SL,R is the similarity between L and R computed in Stage 2. 

By taking into account information about the neighborhood 
around each of the nodes L and R, the concept of co-similarity 
reflects the cluster compactness of all the sequences (leaf 
nodes) in the subtree. In fact, its value is inversely proportional 
to the within-cluster variance. When the subtree becomes 
larger, the co-similarity tends to become smaller, which means 
that the sequences within the subtree become less similar and 
the difference (separation) between sequences in different 
clusters becomes less significant. 

3) Step 3 (Separating high co-similarity nodes from low 

co-similarity nodes): The CLUSS algorithm makes use of a 

systematic method for deciding which subtrees to retain as a 

trade-off between searching for the highest co-similarity 

values and searching for the largest possible clusters. We first 

separate all the subtrees into two groups, one being the group 

of high co-similarity subtrees and the other the low co-

similarity subtrees. This is done by sorting all possible 

subtrees in increasing order of co-similarity and computing a 

separation threshold according to the method based on the 

maximum interclass inertia [26]. 

4) Step 4 (Extracting clusters): From the group of high co-

similarity subtrees, we extract those that are largest. A high 

co-similarity subtree is largest if the following two conditions 

are satisfied: 1) it does not contain any low co-similarity 

subtree; 2) if it is included in another high co-similarity 

subtree, the latter contains at least one low co-similarity 

subtree. Each of these (largest) subtrees corresponds to a 

cluster and its leaves are then collected to form the 

corresponding cluster. 

IV. RESULTS 

To illustrate its efficiency, we tested CLUSS extensively on 
a variety of protein datasets and databases and compared it 
with several mainstream clustering algorithms. We analyzed 
the results obtained for the different tests with support from the 
literature and functional annotations. Full data files and results 
cited in this section are available at CLUSS website. 



A. The clustering quality measure 

To highlight the functional characteristics and 
classifications of the clustered families, we introduce the 
Qmeasure which quantifies the quality of a clustering by 
measuring the percentage of correctly clustered protein 
sequences based on their known functional annotations. This 
measure can be easily adapted to any protein sequence 
database. The Qmeasure is defined as follows: 

Q
measure

=
  Pi

C
i=1  -U

N
                              (13) 

Where N is the total number of clustered sequences, C is 
the number of clusters obtained, Pi is the largest number of 
sequences in the ith cluster obtained belonging to the same 
function group according to the known reference classification, 
and U is the number of unclustered sequences. For the extreme 
case where each cluster contains one protein with all proteins 
classified as such, the Qmeasure is ―0‖, since C becomes equal to 
N, and each Pi the largest number of obtained sequences in the 
ith cluster is ―1‖. 

B. COG and KOG databases 

To illustrate the efficiency of CLUSS in grouping protein 
sequences according to their functional annotation and 
biological classification, we performed extensive tests on the 
phylogenetic classification of proteins encoded in complete 
genomes, commonly named the Clusters of Orthologous 
Groups of proteins database (COG) [27]. As mentioned in the 
web site for the database, the COG (i.e., for unicellular 
organisms) and KOG (i.e., for eukaryotic organisms) clusters 
were delineated by comparing protein sequences encoded in 
complete genomes, representing major phylogenetic lineages. 
Each COG and KOG consists of individual proteins or groups 
of paralogs from at least 3 lineages and each thus corresponds 
to an ancient conserved domain. COG and KOG contain (i.e., 
to date) 192,987 and 112,920 classified protein sequences, 
respectively. 

To perform a biological and statistical evaluation of 
CLUSS, we randomly generated two sets of 1000 large subsets, 
one from the COG classification and the other one from the 
KOG classification. Each subset contains between 47 and 1840 
non-orphan protein sequences (i.e., each selected protein 
sequence has at least one similar from the same functional 
classification) from at least 10 distinct groups from COG or 
KOG classification. We tested CLUSS on both sets of 1000 
subsets using each of the substitution matrices BLOSUM62 
[18] and PAM250 [19]. The average Qmeasure value of the 
clusterings obtained for the COG classification is superior to 
90% with a standard deviation of 6.24%, and the value for the 
KOG classification is superior to 86% with a standard 
deviation of 7.45%. The results obtained show clearly that 
CLUSS is indeed effective in grouping sequences according to 
the known functional classification of COG and KOG 
databases. 

In the aim of comparing the efficiency of CLUSS to that of 
alignment-dependent clustering algorithms, we performed tests 
using CLUSS, BlastClust [7], TRIBE-MCL [8] and gSPC [9] 
on the COG and KOG classifications. In all of the tests 

performed, we used the widely known protein sequence 
comparison algorithm ClustalW [28] to calculate the similarity 
measure matrices used by TRIBE-MCL [8] and gSPC [9]. Due 
to the complexity of alignment, these tests were done on two 
sets of six randomly generated subsets, named C1 to C6 for 
COG and K1 to K6 for KOG. The obtained results are 
summarized in Table I. 

The results in Table I show clearly that CLUSS obtained 
the best Qmeasure compared to the other algorithms tested. 
Globally, the clusters obtained using our new algorithm 
CLUSS correspond better to the known characteristics of the 
biochemical activities and modular structures of the protein 
sequences according to COG and KOG classifications. 

The execution time reported in Table I for algorithm 
comparison, show clearly that the fastest algorithm is 
BlastClust [7], closely followed by our algorithm CLUSS, 
while TRIBE-MCL [8] and gSPC [9], which use ClustalW [28] 
as similarity measures, are much slower than BlastClust [7]. 

TABLE I.  QUALITY MEASURES (QM) AND EXECUTION TIMES (IN 

SECONDS) OBTAINED ON EACH COG AND KOG SUBSET. NUMBERS OF 

PROTEINS ARE INDICATED BETWEEN BRAKETS. 

Protein 

subsets 

CLUSS BlastClust T-MCL gSPC 

Qm Time Qm Time Qm Time Qm Time 

C1 (336) 95.21 116 81.25 10 92.26 332 93.45 340 

C2 (214) 96.74 49 84.22 7 88.78 141 93.92 146 

C3 (215) 91.34 74 87.50 14 83.68 273 73.26 285 

C4 (355) 93.21 86 82.81 12 78.59 315 79.71 324 

C5 (667) 97,56 667 94.00 105 63.46 5393 70.01 5338 

C6 (309) 92.99 68 88.02 18 87.70 224 88.99 239 

K1 (363) 93.38 414 67.21 44 69.69 1168 76.85 1209 

K2 (425) 93.71 289 31.01 27 68.70 1208 53.64 1230 

K3 (411) 91.25 258 42.33 55 74.85 270 75.91 325 

K4 (360) 96.42 361 38.88 127 66.66 1123 67.22 1220 

K5 (326) 95.67 221 77.91 33 75.46 688 82.51 718 

K6 (590) 92,94 779 50.33 405 85.25 3782 66.94 4181 

C. G-proteins family 

The G-proteins [29] (i.e., for guanine nucleotide binding 
proteins) belong to the larger family of the GTPases. Their 
signaling mechanism consists in exchanging guanosine 
diphosphate (GDP) for guanosine triphosphate (GTP) as a 
general molecular function to regulate cell processes (reviewed 
extensively in [30]). This family has been the subject of a 
considerable number of publications by researchers around the 
world, so we considered it a good reference classification to 
test the performance of CLUSS. The sequences belonging to 
this family used in our experimentation are available at CLUSS 
website. The experimental results obtained using the 
algorithms CLUSS, BlastClust [7], TRIBE-MCL [8] and gSPC 
[9] are summarized in Table II. The clustering results for the 
G-protein family show clearly that although this family is 
known to be easy to align, which should have facilitated the 
clustering task of the alignment-dependent algorithms, CLUSS 
yields a clustering with Q-measure value of 92.74%, the 
highest of all the algorithms tested. Thus, the results obtained 
by CLUSS are much closer to the known classification of the 
G-protein family than those of the other algorithms tested are. 



We can make the same observation about the execution times 
of the different algorithms in Table II as in Table I. 

TABLE II.  QUALITY MEASURE (QM) AND EXECUTION TIMES (IN SECONDS) 

OBTAINED ON G-PROTEINS FAMILY. 

Protein 

subset 

CLUSS BlastClust T-MCL gSPC 

Qm Time Qm Time Qm Time Qm Time 

G-proteins 

381 proteins 
92.7 85 42.1 14 40.7 419 52.6 432 

D. The 33 (/)8-barrel proteins 

To show the performance of CLUSS with multi-domain 
protein families which are known to be hard to align and have 
not yet been definitively aligned, experimental tests were 

performed on the group of the 33 (/)8-barrel proteins, a 
group within Glycoside Hydrolases family 2 (GH2), from the 
CAZy database [29], studied recently by Côté et al. [32] and 
Fukamizo et al. [33]. The periodic character of the catalytic 

module known as ―(/)8-barrel‖ makes these sequences hard-
to-align using classical alignment approaches. The difficulties 
in aligning these modules are comparable to the problems 
encountered with the alignment of tandem-repeats, which have 
been exhaustively discussed by Higgins [11]. The FASTA file 
and clustering results of this subfamily are available on the 
CLUSS website. This group of 33 protein sequences includes 
―β-galactosidase‖, ―β-mannosidase‖, ―β-glucuronidase‖ and 
―exo-β-D-glucosaminidase‖ enzymatic activities, all 
extensively studied at the biochemical level. These sequences 
are multi-modular, with various types of modules, which 
complicate their alignment. Clustering such protein sequences 
using the alignment-dependent algorithms thus becomes 
problematic. In our experiments, we tested quite a few known 
algorithms to align the 33 protein sequences, such as MUSCLE 
[34], ClustalW [28], MAFFT [35], T-Coffee [36] etc. The 
alignment results of all these algorithms are in contradiction 
with those presented by Côté et al. [32] that in turn are 
supported by the structure-function studies of Fukamizo et al. 
[33]. This encouraged us to perform a clustering on this 
particular GH2 subfamily, to compare the behavior of CLUSS 
with BlastClust [7], TRIBE-MCL [8] and gSPC [9] in order to 
validate the use of CLUSS on the hard-to-align proteins. An 
overview of the results is given below. The corresponding 

names and database entries of the 33 (/)8-barrel proteins 
group are indicated at CLUSS website. 

1) CLUSS results: The 33 (/)8-barrel proteins were 

subdivided by CLUSS into five subfamilies, organized in five 

main branches, details in Table III for corresponding cluster of 

each protein sequence and Figure 1 for the resulted 

phylogenetic tree. The first and the second branch correspond, 

respectively, to the first and the second clusters, which include 

enzymes with ―β-mannosidase‖ activities; the third branch 

corresponds to the third cluster, which includes enzymes with 

―β-glucuronidase‖ activities; the fourth branch corresponds to 

the forth cluster, which includes enzymes with ―β-

galactosidase‖ activities; the fifth branch corresponds to the 

fifth cluster, which includes enzymes with ―exo-β-D-

glucosaminidase‖ activities. 

2) BlastClust results: The 33 (/)8-barrel proteins were 

subdivided by BlastClust [7] into five subfamilies (see Table 

III). Almost all the enzymes were clustered in the appropriate 

clusters, except for seven proteins that were unclustered, 

among which we find the following well-classified enzymes: 

the ―β-galactosidase‖ enzymes GaA, GaK and GaC; the ―β-

mannosidase‖ enzyme UnBc; and the ―exo-β-D-

glucosaminidase‖ enzyme CsAo. 

3) Tribe-MCL results: The 33 (/)8-barrel proteins were 

subdivided by TRIBE-MCL [8] into two mixed subfamilies 

(see Table III). We find the ―β-mannosidase‖ enzymes MaA, 

MaC and MaT grouped in the ―β-galactosidase‖ subfamily. 

Furthermore, the ―exo-β-D-glucosaminidase‖ and ―β-

glucuronidases‖ enzymes are grouped in the same subfamily. 

4) gSPC results: The 33 (/)8-barrel proteins were 

subdivided by gSPC [9] into three subfamilies (see Table III). 

Almost all the enzymes were grouped in the appropriate 

subfamily, except for the ―β-galactosidases‖ and the ―β-

glucuronidases‖ which were grouped in the same subfamily. 

TABLE III.  CLUSTERING RESULTS ON 33 (/)8-BARREL GROUP 

# Protein 

name 

Côté & 

Fukamizo 
CLUSS BlastClust T-MCL gSPC 

1 UnA 1 1 1 1 1 

2 UnBv 1 1 1 1 1 

3 UnBc 1 1 / 1 1 

4 UnBm 1 1 1 1 1 

5 UnBp 1 1 1 1 1 

6 UnR 1 1 1 1 1 

7 MaA 2 2 2 2 1 

8 MaB 2 2 2 1 1 

9 MaH 2 2 2 1 1 

10 MaM 2 2 2 1 1 

11 MaC 2 2 2 2 1 

12 MaT 2 2 2 2 1 

13 GIC 3 3 3 2 2 

14 GIE 3 3 3 2 2 

15 GIH 3 3 3 2 2 

16 GIL 3 3 3 2 2 

17 GIM 3 3 3 2 2 

18 GIF 3 3 3 2 2 

19 GIS 3 3 3 2 2 

20 GaEco 4 4 4 2 2 

21 GaA 4 4 / 2 2 

22 GaK 4 4 / 2 2 

23 GaC 4 4 / 2 2 

24 GaEcl 4 4 4 2 2 

25 GaL 4 4 4 2 2 

26 CsAo 5 5 / 2 3 

27 CsS 5 5 5 2 3 

28 CsG 5 5 5 2 3 

29 CsM 5 5 5 2 3 

30 CsN 5 5 / 2 3 

31 CsAn 5 5 / 2 3 

32 CsH 5 5 5 2 3 

33 CsE 5 5 5 2 3 



Globally, the clustering of the 33 (/)8-barrel proteins 
generated by CLUSS corresponds better to the known 
characteristics of their biochemical activities and modular 
structures than do those yielded by the other algorithms tested. 
The results obtained with our new algorithm were highly 
comparable with those of the more complex, structure-based 
analysis performed by Côté et al. [32] and Fukamizo et al. 
[33]. 

 

Figure 1.  Phylogenetic tree of 33 (/)8-barrel 

V. DISCUSSION 

The new similarity measure SMS presented in this paper 
makes possible to measure the similarity between protein 
sequences based solely on the conserved motifs. Its major 
advantage compared to the alignment-dependent approaches is 
that it gives significant results with protein sequences 
independent of their alignability, which allows it to be effective 
on both easy-to-align and hard-to-align protein families. This 
property is inherited by CLUSS, our new clustering algorithm, 
which uses it as its similarity measure. CLUSS used jointly 
with SMS is an effective clustering algorithm for protein sets 
with a restricted number of functions, which is the case of 
almost all protein families. It more accurately highlights the 
characteristics of the biochemical activities and modular 
structures of the clustered protein sequences than do the 
alignment-dependent algorithms. 

So far, our similarity measure has been based on pre-
determined substitution matrices. A possible future 
development is to propose an approach to automatically 
compute the weights of the conserved motifs instead of relying 
on pre-calculated substitution scores. There is also a need to 
speed up the extraction of the conserved motifs and the 
clustering of the phylogenetic tree, to scale the algorithm on 
datasets that are much larger in size with many more biological 
functions. 

We believe that CLUSS is an effective method and tool for 
clustering protein sequences to meet the needs of biologists in 
terms of phylogenetic analysis and function prediction. In fact, 
CLUSS gives an efficient evolutionary representation of the 
phylogenetic relationships between protein sequences. This 
algorithm constitutes a significant new tool for the study of 
protein families, the annotation of newly sequenced genomes 
and the prediction of protein functions, especially for proteins 
with multi-domain structures whose alignment is not 
definitively established. Finally, the tool can also be easily 
adapted to cluster other types of genomic data. 
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