

 122 Int. J. Computational Biology and Drug Design, Vol. 1, No. 2, 2008

 Copyright © 2008 Inderscience Enterprises Ltd.

CLUSS2: an alignment-independent algorithm for
clustering protein families with multiple biological
functions

Abdellali Kelil* and Shengrui Wang
Faculty of Sciences,
ProspectUS Laboratory,
Department of Computer Sciences,
University of Sherbrooke, Sherbrooke, J1K 2R1 QC, Canada
E-mail: Abdellali.Kelil@USherbrooke.ca
E-mail: Shengrui.Wang@USherbrooke.ca
*Corresponding author

Ryszard Brzezinski
Faculty of Sciences,
Microbiology and Biotechnology Laboratory,
Department of Biology,
University of Sherbrooke, Sherbrooke, J1K 2R1 QC, Canada
E-mail: Ryszard.Brzezinski@USherbrooke.ca

Abstract: CLUSS is an algorithm proposed for clustering both alignable and
non-alignable protein sequences. However, CLUSS tends to be ineffective
on protein datasets that include a large number of biochemical activities.
To overcome this difficulty, we propose in this paper a new algorithm, named
CLUSS2 that scales better with the increase of the number of biochemical
activities. CLUSS2 differs from CLUSS in many ways including protein
sequences representation, conserved motifs extraction and time efficiency.
Our experiments show that CLUSS2 more accurately highlights the functional
characteristics of the clustered families, especially for those with a large
number of biochemical activities.

Keywords: clustering; similarity measure; biological function; non-alignable.

Reference to this paper should be made as follows: Kelil, A., Wang, S. and
Brzezinski, R. (2008) ‘CLUSS2: an alignment-independent algorithm for
clustering protein families with multiple biological functions’, Int. J.
Computational Biology and Drug Design, Vol. 1, No. 2, pp.122–140.

Biographical notes: Abdellali Kelil is currently a PhD candidate at the
University of Sherbrooke, and a member of the ProspectUS data mining and
bioinformatics laboratory at the same university. His current research interests
include protein analysis and classification and functional prediction.

Shengrui Wang received his PhD from the Institut National Polytechnique in
Grenoble, France. He is Director of ProspectUS laboratory at the University of
Sherbrooke. His research interests include pattern recognition, data mining,
artificial intelligence and information retrieval.

 CLUSS2: an alignment-independent algorithm for clustering protein 123

Ryszard Brzezinski received his PhD from the University of Warsaw, Poland.
He is Director of a laboratory of molecular biotechnology, environmental
microbiology and bioinformatics at the University of Sherbrooke.

1 Introduction

To predict the biochemical activity of a newly sequenced or not yet characterised
protein sequence, it is necessary to compare its biochemical properties to those of
functionally well-characterised protein sequences, to assign this protein to one of
the protein families. However, this is not sufficient to attribute a biochemical activity
to the protein with a high degree of confidence, since a single family can include a
number of biochemical activities. A possible solution for assessing the differences in
cases where protein sequences from the same family have different activities is
clustering. The literature reports many clustering approaches to the task of grouping
protein families into subfamilies of protein sequences that are functionally more closely
related. However, clustering protein sequences remains a difficult challenge, especially
for sequences whose alignment is not biologically validated (i.e., hard-to-align or totally
non-alignable sequences), such as tandem-repeat, multi-domain and circular-permutation
proteins, for which alignment-dependent algorithms do not yield biologically plausible
clustering results. The main reason is that these algorithms use an alignment process
based on matching motifs in corresponding positions, whereas non-alignable proteins
often have similar or conserved domains in non-corresponding positions. A more detailed
discussion on why these proteins are difficult to align and hard to cluster is given in
Kelil et al. (2007a). To the best of our knowledge, the only alignment-independent
clustering algorithm which is effective on both alignable and non-alignable protein
sequences is the CLUSS algorithm which we proposed recently in Kelil et al. (2007b).

CLUSS is based on a measure named SMS which we designed specifically to
compute the similarity between two protein sequences. The SMS measure depends on
identical matched motifs and is effective for both alignable and non-alignable protein
sequences, a property that plays a key role in CLUSS. Compared to alignment-dependent
algorithms, CLUSS highlights the characteristics of the biochemical activities and
modular structures of the clustered protein sequences. However, it has a tendency to be
less effective when applied to large protein datasets with many biochemical activities.
CLUSS also suffers from another problem. Despite the use of optimisation techniques to
speed up the matching of motifs, it is still not possible to reduce the worst-case
complexity to a linear time in the SMS computation, which remains slow, especially for
large protein datasets. All these factors prevent CLUSS from being effective on large
protein datasets.

In this paper we propose a new algorithm for clustering protein sequences, which we
have named CLUSS2. CLUSS2 is similar to CLUSS in that both are hierarchical
clustering algorithms and both aim primarily to cluster hard-to-align sequences.
However, CLUSS2 differs significantly from CLUSS in two main respects. First,
CLUSS2 is based on a new measure tSMS that extends SMS for computing similarity
between protein sequences. The tSMS measure allows the matching of similar motifs,
rather than imposing identical matches as in SMS. tSMS is computed based on a new
algorithm for extracting matched motifs, which is the main reason for its increased

 124 A. Kelil et al.

efficiency. The second major difference from CLUSS is that CLUSS2 applies Singular
Value Decomposition (SVD) techniques to the similarity matrix obtained from tSMS, to
create a representation of each protein sequence in a vector space. This transformation
allows the application of vector operations during the clustering process. One important
advantage is that this yields a representative (centroid) for each cluster; another is the
possibility of further reducing the runtime by using approximate representations.
CLUSS2 is much faster and more effective than CLUSS, especially for large protein
datasets with a large number of biological activities.

To show the effectiveness of CLUSS2, we performed extensive clustering
experiments on the COG and KOG databases, which contain phylogenetic classifications
of proteins encoded in complete genomes (Tatusov et al., 2003), and also on reference
sequence proteins encoded by complete prokaryotic and chloroplast plasmids and
genomes, known as the Protein Clusters (PC) database, available at the NCBI website:
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/CLUSTERS/. To demonstrate its ability to deal
with hard-to-align sequences, we tested it on the (α/β)8 barrel proteins group, belonging
to the Glycoside Hydrolases (GH) family (Coutinho and Henrissat, 1999). In addition,
we carried out experimental comparisons with a variety of mainstream algorithms
including the BlastClust program (Dondoshansky and Wolf, unpublished), which belongs
to the standalone BLAST package used to cluster either protein or nucleotide sequences,
available from the NCBI website ftp://ftp.ncbi.nih.gov/blast/, and the well-known
algorithms TRIBE-MCL (Enright et al., 2002) and gSPC (Tetko et al., 2005). These
comparisons were made on hard-to-align and easy-to-align protein sequences. The results
of these experiments show advantages of CLUSS2 in yielding more significant clusters of
proteins with similar functional activities, especially for large protein datasets with a
variety of biochemical activities.

2 The new similarity measure tSMS

The measure SMS, used in CLUSS to measure the similarity of a pair of protein
sequences X and Y, was defined based on a key set of strictly matched subsequences
(i.e., identical amino acids) of maximal length between the sequences X and Y, denoted
by EX,Y. Unlike other word-counting methods, which measure similarity by detecting
multiple occurrences and handling them according to their matching scores, as in the
well-known algorithm Blast (Altschul et al., 1990), which uses the SHP criterion,
SMS takes into account both the position and the inclusion of the matched subsequences.

The fact that we utilise a single similarity value which includes all of the identical
matches as well as matched motifs from positions which, while non-equivalent according
to the primary structure, might well be equivalent when viewed in terms of secondary and
tertiary structure, allows us to take advantage of certain information included in the
secondary and tertiary structure. Certainly, taking into account only identical motifs may
lead us to overlook some important information in computing similarity. But at the same
time, it also filters out noise (i.e., similarities due to chance) from our similarity measure.
We believe that for protein datasets which include a small number of biochemical
activities, the overlooked information is relatively insignificant compared with the
noise-filtering effect.

The experimental results reported in our recent studies (Kelil et al., 2007a, 2007b)
seem to confirm the advantage of this strategy for such datasets. On the other hand, these

 CLUSS2: an alignment-independent algorithm for clustering protein 125

studies show that the strategy is not very efficient on protein datasets with a large number
of biochemical activities. This suggests that the proportion of overlooked similarity
information may become more significant as the number of biochemical activities
increases, undermining the noise-filtering advantage.

The similarity measure SMS also suffers from problems of speed. Although we
utilised a technique to speed up the extraction of significant motifs, the variable length of
the matched sequences made it not impossible to reduce the worst-case complexity to a
linear time using this technique.

In this paper, we propose a new similarity measure named for ‘tolerant SMS’ (tSMS)
which generalises SMS in terms of tolerance to mismatches and scales well with increase
in the number of biochemical activities. Also, tSMS is much faster than SMS; this is
made possible by the optimisation techniques used, which have reduced the worst-case
complexity to a linear time.

2.1 The matching set

We will use |•| to express the length of a sequence. Let X and Y be two protein sequences
whose similarity we want to measure, belonging to the protein family F which contains
N protein sequences. Let x and y be two subsequences of the same length, belonging to
X and Y, respectively. We use Γx,y to represent the matched subsequence of x and y.
We use l to represent the minimum number of matched residues between x and y that Γx,y
must include; at the same time, l is also the maximum number of non-matched residues
allowed in Γx,y. A detailed discussion on the choice of the value of l was given in
Kelil et al. (2007a). The length l is used with the aim of detecting and utilising the
significant motifs best conserved during evolution and minimising the influence of motifs
that occur by chance. We use m (chosen by the user) to represent the minimum
substitution score that two matched residues must have in order to be considered similar,
or to be considered allowable in Γx,y. For X and Y, we define the set of all matched
subsequences Γx,y denoted by ,

, ,l m
X YE as follows:

,

,
,

,, ,

,

,
, , , ,

card({ })
card({ }) .

, () () (,)

() () () ()

x y

x y i i
l m

x y i iX Y x y

x y i i i i

l m
x y X Y x y x y

x y

x y l
x y lE

i x x y y M x y m

E x x y y′ ′ ′ ′

 Γ = =

 Γ = ≥
 Γ ≠ ≥= Γ
 ∀ ≤ Γ ∈ ∧ ∈ ⇒ ≥
 ′ ′∀ ∈ ∧ Γ ≠ Γ ⇒ ⊄ ∨ ⊄

 (1)

Here m is one of the substitution matrices (chosen by the user) and i is used to
identify the ith position in a subsequence. The variables xi and yi are simply the ith amino
acids belonging to subsequences x and y, respectively. M(xi, yi) is the substitution score of
the ith amino acids of the subsequences x and y. The constant m is a minimum value that
the score between amino acids xi and yi must have to be considered as matched.
The symbols x′ and y′ in the formula are simply used as variables, in the same way
as x and y. The expression (.⊄.) means that the element to the left of the symbol is not
included in the one to the right, either in terms of the composition of the subsequences or
in terms of their respective positions in their protein sequence. The role of l is to detect
and make use of the significant motifs best conserved during evolution and to minimise

 126 A. Kelil et al.

the influence of the motifs that occur by chance. The matching set ,
,

l m
X YE thus includes the

significant motifs that correspond to matched protein subsequences that are more likely to
be similar due to conservation phenomena and not due to chance. The matching set will
be used to compute the matching score of the pair of sequences. Here are a few detailed
explanations about Formula 1:

• ,Γx y x y= = means that the matched motif Γx,y as well as the matched

subsequences x and y include the same number of amino acids.

• ,card({ })
i ix y i ix y lΓ = ≥ means that the matched motif Γx,y must include at least l

identical similar residues according to the threshold m.

• ,card({Γ })
i ix y i ix y l≠ ≤ means that the matched motif. Γx,y can include at most l

non-identical residues according to the threshold m.

• ,Γx y l≥ means that the matched subsequences Γx,y must have the minimum length l.

• , , () () (,)x y i i i ii x x y y M x y mΓ∀ ≤ ∈ ∧ ∈ ⇒ ≥ means that the subsequences x and y

must not include matched residues with a substitution score less than a threshold m.

• ,
, , , ,() () () ()l m

x y X Y x y x yE x x y y′ ′ ′ ′∀Γ ∈ ∧ Γ ≠ Γ ⇒ ⊄ ∨ ⊄′ ′ means that for any matched
subsequences Γx,y and ,Γx y′ ′ belonging to ,

, , ,, Γ and Γl m
X Y x y x yE ′ ′ being different implies

that ,Γx y′ ′ is not included in Γx,y either in terms of the composition of their
corresponding subsequences or in terms of their respective positions in their protein
sequences according to the partial order induced by set inclusion. In other words,
each of the Γx,y in ,

,
l m
X YE is maximal.

To summarise, the formula means that the matching set ,
,

l m
X YE contains all the matched

subsequences Γx,y of maximal length (i.e., at least l identical matched residues and at most
l non-identical matched residues) between the sequences X and Y, with a tolerance to
mismatches determined by m.

The formula ,
,

l m
X YE adequately describes some known properties of polypeptides and

proteins. First, protein motifs (i.e., series of defined residues) determine the tendency of
the primary structure to adopt a particular secondary structure, a property exploited by
several secondary-structure prediction algorithms. Such motifs can be as short as four
residues (for instance, those found in β-turns), but the propensity to form an α-helix or a
β-sheet is usually defined by longer motifs. Second, our proposal to take into account
multiple occurrences of a particular motif reflects the fact that sequence duplication is
one of the most powerful mechanisms of gene and protein evolution. If a motif is found
twice or more in a protein, it is more probable that it was acquired by duplication of a
segment from a common ancestor than by acquisition from a distant ancestor.

2.2 Definition of the similarity measure tSMS

Our primary concern is to develop an approach that will enable us to cluster hard-to-align
protein sequences such as circularly-permuted, multi-domain and tandem-repeat protein
sequences. For such sequences, the alignment-dependent approaches usually fail to yield
biologically suitable results. In fact, the hard-to-align proteins often have similar and

 CLUSS2: an alignment-independent algorithm for clustering protein 127

conserved domains in non-equivalent positions in the primary structure, which makes
them difficult to align. However, these domains might well be in equivalent positions
when viewed in terms of secondary and tertiary structure. In the absence of explicit
identification of such positions in our alignment-free approach to similarity computation,
we adopted the strategy of matching all the conserved domains, even those on
non-equivalent positions. The reason is that, with a suitable value of the minimum
threshold ‘l’ for matched motifs, which allows us to detect and make use of the
significant motifs best conserved during evolution and to minimise the influence of those
motifs that occur by chance, it is more probable that we will effectively match motifs that
are similar due to conservation rather than to random phenomena.

For a protein sequence that comprises a number of significant motifs that were better
conserved during evolution, each motif contributes in a complex way to provide one or
more biological functions. A mutation in one of the conserved motifs can significantly
alter or even eradicate the biological activity of the protein, while in another conserved
motif it might only slightly decrease the expression of the biological function. So,
we make use of a substitution matrix to emphasise the fact that each conserved motif can
be involved to a different degree in a biological activity.

Let M be a substitution matrix, and Γ matched subsequence belonging to the
matching set ,

,
l m
X YE We define a weight W(Γ) for the matched subsequence Γ, to quantify

its importance compared to all the other matched subsequences of ,
,

l m
X YE as follows:

Γ

1

(Γ) (Γ)
i

W M i iΓ
=

= ∑ (2)

where Γ[i] is the ith amino acid of the matched subsequence Γ, and M(Γ[i], Γ[i]) is the
substitution score of this amino acid with itself. Here, in order to make our measure
biologically plausible, we use the substitution concept to emphasise the relation that
binds one amino acid with itself. The value of M(Γ[i], Γ[i]) (i.e., within the diagonal of
the substitution matrix) estimates the rate at which each possible amino acid in a
sequence remains unchanged over time. For the pair of sequences X and Y, we define the
matching score SX,Y, understood as representing the substitution relation of the conserved
regions in both sequences, as follows:

,
,

, () / max(,).
l m
X Y

X Y
r E

S W X YΓ
∈

= ∑ (3)

Which is our new similarity measure tSMS for a pair of protein sequences X and Y.

2.3 Conservability vs. mutability

The scoring of identical matches with a substitution matrix in SMS reflects the
conservability of matched residues. The term conservability is more appropriate than
mutability. The nuance is significant for SMS. In fact, protein sequences to be compared
contain conservability and mutability information. In the case of easy-to-align protein
sequences, both conservability and mutability information can be obtained, while in the
case of hard-to-align protein sequences mutability information is difficult to obtain.
This is due to some known problems, such as the problem of repeats and the problem of
substitutions; for details see Higgins (2004). To the best of our knowledge, existing
alignment-based algorithms fail to effectively capture conservability and mutability

 128 A. Kelil et al.

information in hard-to-align protein sequences. On the other hand, the experimental
results reported in Kelil et al. (2007a) show that the use of only conservability
information allows SMS to deal with hard-to-align sequences better than the
alignment-based algorithms. Experimental results also show that SMS handles
easy-to-align protein sequences equally well as the alignment-based algorithms. This
suggests that the utility of conservability might be much more significant than is
generally believed. However, the experiments conducted showed that, as the number of
biochemical activities increases, the strategy of capturing only the conservability
information becomes increasingly insufficient to obtain an accurate similarity measure.
Therefore, the use of mutability information becomes inevitable to overcome this
drawback. In tSMS, both conservability and mutability information are captured and used
to measure the similarity.

2.4 Computational complexity

To compute tSMS, we have made use of a variant of the data structure known as the
‘Suffix Tree’ (Weiner, 1973), developed by Cole et al. (2006) and named the
‘Suffix Tray’. The Suffix Tree is a well-known approach to solving the problem of string
matching in linear time. Given the question of how many occurrences of a pattern P there
are in a string T and where they occur, the Suffix Tree allows an answer to be generated
in ()O P z T+ time and with ()O T space, where z is the number of occurrences of the
pattern P in the text T. With the Suffix Tray, on the other hand, the same task can be
performed in (log)O P + ∑ with the same space complexity ()O T as for the Suffix
Tree. Here ∑ is the alphabet size. For our case ∑ = 20, which is the number of amino
acids. The fact that the Suffix Tray performs the matching in a time independent of T is
very advantageous for speeding up our algorithm.

Let X and Y be a pair of protein sequences to be compared. We start by building the
Suffix Trays corresponding to the individual sequences, TX and TX, which takes time and
space O(|X|) and O(|X|), respectively. These Suffix Trays are trees of O(|X|) and O(|X|)
nodes, containing all the suffixes of the protein sequences X and Y, respectively. Instead
of matching X and Y, which takes time ()O X Y× we perform the same task by
matching only the suffixes of TX with those of TY, or vice-versa, as follows:

Let TX = {x1, x2, … xt} be the set of all suffixes of TX, where t is the number of
possible suffixes. Finding all the occurrences (i.e., exact matching) of a suffix xi out of
the Suffix Tray TY takes time (log 20).O P + Let k be the average number of possible
matches of all amino acids according to the chosen value of m (in Formula 1) and the
chosen substitution matrix. If we consider that we allow a restricted number of
matches per residue (see Table 1) and a restricted number of mismatches per
matched motif (i.e., ≤l), in the worst case, there exist lk possible transformations
of xi, which implies that the pattern xi will have to be matched lk times with the
Suffix Tray TY. This has a time complexity of (log 20).lk O P + Since both k and l
are constants, and are usually small values, the coefficient lk is also a constant.
Performing the matching between all TX suffixes and the Suffix Tray thus takes time

1 2(log 20) (log 20) (log 20) (),l l l l
tk O x k O x k O x k O X+ + + + + + =" which is also

linear.

 CLUSS2: an alignment-independent algorithm for clustering protein 129

Table 1 Number of possible matches for each amino acid with different values of m

BLOSUM62 PAM250
Amino acids m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

A 6 2 1 10 5 1
C 2 1 1 3 1 1
D 5 3 2 10 6 4
E 8 4 3 10 5 3
F 6 3 2 6 4 3
G 4 1 1 7 4 1
H 6 3 2 9 6 4
I 5 4 3 5 5 5
K 6 4 2 10 4 2
L 5 4 3 5 5 5
M 6 4 2 7 4 4
N 10 4 1 11 7 3
P 1 1 1 7 3 1
Q 9 4 2 9 7 4
R 6 3 2 9 5 4
S 9 4 1 11 6 1
T 5 2 1 11 3 1
V 6 4 2 6 4 4
W 3 3 2 4 2 2
Y 4 4 4 5 2 2

Average k 5.6 3.1 1.9 7.8 4.4 2.7

Depending on the m value (i.e., column), each amino acid (i.e., row) has a limited number
of possible matches; each k value is the average of the corresponding column values.

3 The new clustering algorithm CLUSS2

CLUSS2 is composed of three main stages. The first one consists in building a pairwise
similarity matrix S using our new similarity measure tSMS. The second consists in
building a phylogenetic tree according to this matrix, using a new hierarchical clustering
approach based on spectral decomposition. The third consists in identifying subfamily
nodes from which leaves are grouped into subfamilies.

In the algorithm CLUSS (Kelil et al., 2007b), we used a classical clustering approach
by directly making use of the pairwise similarity matrix. In the present version we have
developed a new and original hierarchical algorithm, inspired by the LSA approach, for
more details see Berry and Fierro (1996). We take advantage of this approach by
extracting global information from a large number of protein sequences rather than
carrying out a pairwise comparison. We have chosen to keep the name CLUSS, since
both versions have the same basic principles, and they are inspired from the same idea.

 130 A. Kelil et al.

3.1 Stage 1: Similarity matrix

Using one of the known substitution score matrices, such as BLOSUM62 or PAM250,
and our new similarity measure tSMS, we compute S, the N × N pairwise similarity
matrix, where N is the number of sequences of the protein family F to be clustered, and
Si,j is the similarity between the ith and the jth protein sequences of F. By using tSMS, the
construction of the pairwise similarity measure matrix S becomes much faster, since we
transform all the N protein sequences into Suffix Trays only once before the pairwise
matching of the protein sequences. Both the transformation of each protein sequence and
the matching of two protein sequences take linear time with respect to sequence length,
as seen in Section 2.1.

3.2 Stage 2: Phylogenetic tree

Using spectral decomposition on the pairwise similarity matrix S, we obtain a set of
vectors. Each of the vectors is used to represent a protein sequence in the new vector
space resulting from the decomposition of S. Such a representation is valid in the sense
that the similarity between each pair of sequences from the original similarity matrix S is
equal or approximately equal to the similarity between the corresponding vectors
measured by the inner product function. This representation facilitates the subsequent
(hierarchical) clustering. In fact, a cluster will be represented by only one vector; cluster
merging can be easily performed by adding two vectors; and the similarity between two
clusters can then be estimated by the cosine similarity function. This stage is composed
of three steps, as follows.

3.2.1 Step1: Spectral decomposition of the similarity matrix S

We will utilise the theorem in linear algebra, which states that any R × C matrix A whose
number of rows R is greater than or equal to its number of columns C can be written as
the product of an R × C column-orthogonal matrix U, a C × C diagonal matrix Z with
non-negative elements, which are the singular values, and the transpose of an R × R
orthogonal matrix V. This decomposition is named the Singular Value Decomposition
(SVD). The matrix A can be written as follows:

.TA U Z V= × × (4)

We apply the SVD to the squared pairwise similarity matrix SN×N, which is
decomposed into the product of three N × N matrices U, Z and V. The first of these, U, is
a left singular matrix describing the original row entities as vectors of derived orthogonal
factor values; the second, Z, is a diagonal matrix containing non-negative scaling values;
and the third, V, is a right singular matrix describing the original column entities in the
same way as the first matrix. Since the matrix Z contains non-negative singular values,
the SVD of S can be written in the following form:

() ().TS U Z Z V= × × × (5)

For the special case where S is a square and symmetric matrix with a diagonal
including much larger values than the rest of the matrix (as is the case here), the matrix S

 CLUSS2: an alignment-independent algorithm for clustering protein 131

is very likely to be a semi-definite positive matrix, or at least very close to that. We can
thus write Formula 6 in the form:

() ().TS U Z Z U× × ×� (6)

We can write:

() () .TS U Z U Z× × ×� (7)

We define an N × N matrix = ,E U Z× for which each row = .i iE U Z×
Now each protein sequence i belonging to the protein family F to be clustered is
represented by the vector Ei in the new vector space, mapped by the matrix E. Therefore,
the similarity measure SX,Y between a pair of sequences X and Y is now equal or
approximately equal to the inner product <EX, EY>. The idea of mapping the protein
sequences onto a vector space is based on the conservability of distance.
This transformation allows us to apply vector operations during the clustering process
and obtain (and maintain) a representative for each subcluster. The transformation, as
discussed in LSA, also allows us to take advantage of transitivity in the similarities
between pairs of proteins (documents, in LSA).

It is possible to take further advantage of this representation. In fact, by taking into
account only the K (where K ≤ N) largest non-negative singular values from the N × N
matrix Z, and their corresponding singular vectors from the N × N matrices U and V,
we get the rank K approximation of S with the smallest error according to the Frobenius
norm (Golub and Loan, 1996). The matrices U, Z and V are reduced to N × K, K × K, and
N × K matrices, respectively. Thus, the spectral decomposition approach maps the protein
vectors onto a new multidimensional space in which the corresponding vectors are the
rows of the N × K matrix E. Reducing the K value significantly speeds up the clustering
process. In the experiments carried out in this paper, we have not exploited the strategy of
reducing the value of K, since we set it to K = N because we wanted to concentrate our
efforts on the accuracy of the new clustering approach adopted in CLUSS2. However,
we will do it extensively in a future work.

3.2.2 Step 2: Phylogenetic tree

Starting from vectors E1, E2, …, EN, each of which is considered as the root node of a
subtree containing only one node, we initialise the similarity between any pair of nodes
by the cosine product of corresponding vectors. We iteratively join a pair of root nodes in
order to build a bigger subtree. At each iteration, a pair of root nodes is selected if they
are the most similar root nodes (i.e., corresponding vectors have the largest cosine
product). This process ends when there remains only one subtree, which is the
phylogenetic tree.

Now we introduce the concept of co-similarity for ranking the nodes in the
phylogenetic tree. Let L and R be a pair of nodes (L for left and R for right) belonging to
the phylogenetic tree. By taking into account information about the neighbourhood
around each of the nodes L and R, the concept of co-similarity reflects the cluster
compactness of all the sequences (i.e., leaf nodes) in the subtree. In fact, its value is
inversely proportional to the within-cluster variance. As the subtree becomes larger, the
co-similarity tends to become smaller, which means that the sequences within the subtree
become less similar and the difference (i.e., separation) between sequences in different

 132 A. Kelil et al.

clusters becomes less significant. In simpler terms, the co-similarity of a particular node
is a measure of the balance between its two child nodes. Before the construction of the
phylogenetic tree, all co-similarities (of the leaves) are initialised to zero.

Let L and R be the two most similar root nodes at a given iteration step; they are
joined together to form a new subtree P (P for parent), which thus has two children, L
and R, such that EP is its corresponding vector. The new root node P has the following
definitions:

|| || || ||and
|| || || ||

L R
P L R P

L R

E EE E E c
E E

×= + =
+

 (8)

where EL, ER and EP are vectors corresponding to the root nodes L, R and P respectively,
and cP is the co-similarity of P. The norms ||EL|| and ||ER|| depend on the number and
proximity of leaves belonging to the subtrees L and R, respectively, and they measure
how well F is represented by each one of these particular subtrees. According to this
definition, the value of a norm is large if the corresponding subtree is more representative
and small if it is less representative.

We assign a ‘length’ value to each of the two branches connecting L and R to P.
These values are the estimate of the phylogenetic distance from the individual nodes L
and R to their parent P in the tree. This distance has no strict mathematical sense; it is
merely a measure of the evolutionary distance between the nodes. It is comparative to the
notion of dissimilarity. We calculate it as follows:

, ,
|| || || ||and .

|| || || || || || || ||
R L

L P R P
L R L R

E Ed d
E E E E

= =
+ +

 (9)

3.2.3 Step 3: Separating nodes

This step is exactly the same as in the CLUSS algorithm. However, we give more details
about this step here. The CLUSS2 algorithm makes use of a systematic method for
deciding which subtrees to retain as a trade-off between searching for the highest
co-similarity values and searching for the largest possible clusters. We first separate all
the subtrees into two groups, one being the group of low co-similarity subtrees, and the
other the high co-similarity subtrees. This is done by sorting all possible subtrees in
increasing order of co-similarity and computing a separation threshold according to the
maximum interclass inertia method, based on the Koenig-Huygens theorem, which gives
the relationship between the total inertia and the inertia of each group relative to the
centre of gravity. In our case we have just two groups, the high co-similarity group and
the low cosimilarity group. The procedure is described as follows:

Let D be the set of subtrees, DLow the subset of low co-similarity subtrees, and DHigh
the subset of high co-similarity subtrees, such that:

Low High Low High,D D D D D= = ∅∪ ∩ (10)

Low High, | , .L RL R D L D R D c c∀ ∈ ∈ ∈ ⇒ < (11)

The symbols DLow and DHigh are simply used as variables representing all possible
separations of D according to equations (10) and (11). According to the Koenig-Huygens
theorem, we calculate the total inertia as follows:

 CLUSS2: an alignment-independent algorithm for clustering protein 133

() () ()Low High Low High

Low High

2 2

Total i K j D K D
i D j D

I c c c c c c
∈ ∈

= − + − + −∑ ∑ (12)

where ci and cj are co-similarity values of subtrees i and j belonging to the subsets
DLow and DHigh, all respectively; and

HighLow
and DDc c are means (i.e., centres of gravity) of

subsets DLow and DHigh, respectively. The best separation of D, the set of sorted subtrees
on two subsets DLow and DHigh, is given by the maximum value of lTotal.

3.3 Stage 3: Extracting clusters

From the subset of high co-similarity subtrees belonging to DHigh, we extract those that
are largest. A high co-similarity subtree is largest if the following two conditions are
satisfied:

• it does not contain any low co-similarity subtree belonging to the subset DLow

• if it is included in another high co-similarity subtree, the latter contains at least one
low co-similarity subtree from the subset DLow.

Each of these largest subtrees corresponds to a cluster and its leaves are then collected
to form the corresponding cluster.

4 Experiments

To illustrate its efficiency, we tested CLUSS2 extensively on a variety of protein datasets
and compared it both with CLUSS and with several mainstream clustering algorithms.
We analysed the results obtained for the different tests with support from the literature
and functional annotations. All the data and results cited in this section are available on
the CLUSS website http://prospectus.usherbrooke.ca/CLUSS/. To evaluate the quality of
the clustering results obtained, in our experiments we used the Q-measure that we
introduced in Kelil et al. (2007b).

4.1 Benchmarking

To illustrate the efficiency of CLUSS2 in grouping protein sequences according to their
functional annotations and biological classifications, we performed extensive tests on the
widely known databases COG (unicellular organisms), KOG (eukaryotic organisms) and
PC (microbial protein clusters). The COG and KOG databases include clusters of
orthologous groups of proteins that were delineated by comparing protein sequences
encoded in complete genomes, representing major phylogenetic lineages. The PC
database is a compilation of proteins from the complete genomes of prokaryotes,
plasmids and organelles that have been grouped and manually curated and annotated
based on sequence similarity and protein function.

In order to evaluate CLUSS2 in a statistical manner, we generated three benchmarks
named A, B and C, each containing three different large sets, such that A = {A1, A2, A3}
B = {B1, B2, B3} and C = {C1, C2, C3}. The nine sets in these benchmarks have been
generated in this way; A1, B1 and C1 from the COG database, A2, B2 and C2 from the KOG
database and A3, B3 and C3 from the PC database. Each set contains 1000 different, large,

 134 A. Kelil et al.

randomly generated subsets of protein sequences. Each subset contains a large number of
non-orphan protein sequences (i.e., each protein sequence has at least one similar protein
sequence from the same functional classification). Each subset in the benchmark
A contains a number of proteins with at least five biochemical activities. In the
benchmark B, each subset contains a number of proteins with at least ten biochemical
activities. And finally, in the benchmark C, each subset contains a number of proteins
with at least 20 biochemical activities. Details about the generated benchmarks are given
in Table 2. We tested CLUSS2 and CLUSS on the three benchmarks using both
substitution matrices BLOSUM62 and PAM250. The obtained results for both matrices
were very similar. The results obtained are shown in Table 3, and discussed below.

Table 2 Generated datasets

COG (A1, B1, C1) KOG (A2, B2, C2) PC (A3, B3, C3)
Benchmark Av. No. Av. Length Av. No. Av. Length Av. No. Av. Length
A 298 1087 230 2024 256 815
B 487 1102 458 2043 449 895
C 678 1198 696 2076 628 912

Av. No. is the average number and Av. Length is the average length, of all protein
sequences within each set (column), in each benchmark (row).

Table 3 Benchmarking results (Time in seconds)

COG (A1, B1, C1) KOG (A2, B2, C2) PC (A3, B3, C3)
Benchmark Algorithm Qm SD Time Qm SD Time Qm SD Time

CLUSS2 90.32 3.56 11 86.74 3.41 5 96.61 3.86 15 A
CLUSS 90.56 4.04 27 86.15 4.63 21 96.28 4.67 60
CLUSS2 92.25 5.12 16 87.34 5.76 9 94.45 5.71 18 B
CLUSS 90.81 7.87 49 85.16 7.10 39 91.64 7.14 68
CLUSS2 91.85 7.92 18 86.56 8.45 14 96.11 7.81 21 C
CLUSS 81.39 9.60 61 77.91 11.09 55 88.68 10.94 92

Qm is the average Q-measure, SD the standard deviation and Time the average execution
time, of the clustering results of each set (column) in each benchmark (main row) using
each CLUSS version (child row).

4.1.1 Benchmark A with five biological activities (Table 3)

The average Q-measure (Qm) and the Standard Deviation (SD) values of the clustering
results obtained for each database (COG, KOG and PC) are essentially equal with
CLUSS2 and CLUSS. However, the execution times (Time) for each database clearly
show that CLUSS2 is definitely faster than CLUSS.

4.1.2 Benchmark B with ten biological activities (Table 3)

The Qm and SD values of the clustering results obtained for each of the databases show a
small advantage of CLUSS2 compared to CLUSS. However, the Time values for each
database show once again that CLUSS2 is faster than CLUSS.

 CLUSS2: an alignment-independent algorithm for clustering protein 135

4.1.3 Benchmark C with 20 biological activities (Table 3)

The Qm values of the clustering results obtained for each of the databases using CLUSS2
are clearly higher than those obtained with CLUSS. Also, the SD values of the clustering
results obtained for each database using CLUSS2 are visibly lower than those obtained
with CLUSS. The Time values for each database using CLUSS2 increase much more
slowly than those obtained using CLUSS.

The results obtained clearly show that CLUSS2 is indeed effective in grouping
sequences according to the known functional classification of COG, KOG and PC
databases more efficiently than CLUSS. Contrary to what was observed for CLUSS, the
efficiency of the new algorithm CLUSS2 does not notably decrease with an increase in
the number of biochemical functions included in the clustered protein datasets. Another
important fact to note is that the optimisation techniques used in the new similarity
measure tSMS have significantly improved the time efficiency of the clustering process.

4.2 Comparisons

To compare the efficiency of CLUSS2 to that of alignment-dependent clustering
algorithms, we performed tests using CLUSS2, CLUSS, BlastClust, TRIBE-MCL and
gSPC on the COG, KOG and PC databases. In all of the tests performed, we used the
widely known protein sequence comparison algorithm ClustalW (Thompson et al., 1994)
to calculate the similarity measure matrices used by TRIBE-MCL and gSPC. Due to the
complexity of alignment, these tests were done on three sets of six randomly generated
subsets, named C1 to C6 for COG, K1 to K6 for KOG and P1 to P6 for PC; each
generated protein subset includes protein sequences with at least 20 biological activities.

The results obtained are summarised in Tables 4–6. The experiments show clearly
that CLUSS2 obtained the best Q-measure, compared to the other algorithms tested. Even
if we compare the results of CLUSS2 with those of CLUSS, we can see that CLUSS2 has
obtained better clustering results. This is because each of the subsets tested contains a
number of proteins with a large number of biological functions (each subset includes
protein sequences with at least 20 biological functions). Globally, the clusters obtained
using our new algorithm CLUSS2 correspond better to the known characteristics of the
biochemical activities and modular structures of the protein sequences according to the
COG, KOG and PC classifications. The execution times reported in Tables 4–6 for
algorithm comparison, show clearly that the fastest algorithm is BlastClust, closely
followed by the CLUSS2 algorithm, and then by CLUSS, while TRIBE-MCL and gSPC,
which use ClustalW as a similarity measure, are much slower.

Table 4 Clustering results on the COG database (Time in seconds)

CLUSS2 CLUSS BlastClust TRIBE-MCL gSPC Protein
subsets Qm Time Qm Time Qm Time Qm Time Qm Time
Cl (509) 96.02 33 80.01 109 67.01 20 30.02 422 38.01 451
C2 (448) 98.07 35 68.13 94 42.07 19 35.01 406 31.02 386
C3 (486) 95.06 38 87.02 94 61.03 28 51.04 336 57.01 378
C3 (546) 92.01 36 72.03 114 40.01 22 55.08 479 44.01 492
C4 (355) 98.04 23 86.04 69 69.01 16 40.01 273 42.01 280
C5 (508) 96.01 29 63.04 137 35.03 16 57.01 446 36.10 440
C6 (509) 96.02 33 80.01 109 67.01 20 30.02 422 38.01 451

 136 A. Kelil et al.

Table 5 Comparison on the KOG database (Time in seconds)

CLUSS2 CLUSS BlastClust TRIBE-MCL gSPC Protein
subsets Qm Time Qm Time Qm Time Qm Time Qm Time

Kl (317) 97.02 61 82.02 242 33.13 41 54.05 790 40.02 843
K2 (419) 95.02 86 69.02 279 55.02 63 60.01 371 50.01 450
K3 (383) 91.01 161 76.02 381 69.01 134 30.02 1244 30.02 1348
K4 (458) 95.02 54 76.05 310 37.01 37 59.02 1315 47.01 1349
K5 (480) 95.06 60 79.33 324 50.02 34 46.03 1425 43.02 1409
K6 (388) 93.02 76 80.03 441 32.01 49 49.01 1269 55.04 1336

Table 6 Clustering results on the PC database (Time in seconds)

New CLUSS Prev. CLUSS BlastClust TRIBE-MCL gSPC Protein
subsets Qm Time Qm Time Qm Time Qm Time Qm Time
P1 (538) 91.02 29 65.01 84 44.01 16 31.01 447 41.02 441
P2 (392) 94.01 23 73.01 79 31.01 18 35.02 250 57.01 264
P3 (442) 93.02 31 70.01 84 34.06 14 32.01 316 39.01 390
P4 (595) 95.02 46 60.01 152 66.01 35 58.50 711 30.02 633
P5 (561) 91.17 39 81.02 97 68.08 18 54.02 433 34.01 435
P6 (427) 94.02 22 77.08 75 34.01 16 43.03 410 49.02 399

4.3 G-Proteins family

The G-Proteins (for guanine nucleotide binding proteins) that are available at
http://www.gpcr.org/ belong to the larger family of GTPases. Their signalling mechanism
consists in exchanging Guanosine Diphosphate (GDP) for Guanosine Triphosphate
(GTP) as a general molecular function to regulate cell processes, reviewed extensively in
(Lodish et al., 2004). This family has been the subject of a considerable number of
publications by researchers around the world, so we considered it a good reference
classification to test the performance of CLUSS2. The sequences belonging to this family
(version of October 6, 2007), including the 2604 sequences used in our experiments, are
available on the CLUSS website. The experimental results obtained using both the
CLUSS2 and CLUSS algorithms as well as the algorithms BlastClust, TRIBE-MCL and
gSPC are summarised in Table 7.

Table 7 Clustering results of the G-Proteins family (Time in seconds)

New CLUSS Prev. CLUSS BlastClust TRIBE-MCL gSPC
Protein set Qm Time Qm Time Qm Time Qm Time Qm Time

G-Proteins 91.78 402 89.32 2199 57.78 372 50.89 32,654 61.45 36,751

The clustering results for the G-Proteins family show clearly that although this family is
known to be easy to align, which should have facilitated the clustering task of the
alignment-dependent algorithms, CLUSS2 yields a clustering with the highest Qm value

 CLUSS2: an alignment-independent algorithm for clustering protein 137

of all the algorithms tested, nearly followed by CLUSS. Thus, the results obtained by
CLUSS2 are much closer to the known classification of the G-Proteins family than are
those of the other algorithms tested. In Table 7, we can make the same observation about
the execution times of the different algorithms as in Tables 4–6.

4.4 The 33 (α/β)8-barrel proteins

To show the performance of CLUSS2 with multi-domain protein families which are
known to be hard to align and have not yet been definitively aligned, experimental tests
were performed on the 33 (α/β)8-barrel proteins studied recently by Côté et al. (2006) and
(Fukamizo et al., 2006), which form a group in Glycoside Hydrolases family 2 (GH2)
from the Carbohydrate Active Enzymes database (CAZy) located at http://www.
cazy.org/. The periodic character of the catalytic module known as ‘(α/β)8-barrel’ makes
these sequences hard to align using classical alignment approaches. The difficulties in
aligning these modules are comparable to the problems encountered with the alignment
of tandem-repeats, which have been exhaustively discussed by Higgins (2004).
The FASTA file and full clustering results of this subfamily are available on the
CLUSS website. This group of 33 protein sequences includes ‘β-galactosidase’,
‘β-mannosidase’, ‘β-glucuronidase’ and ‘exo-β-D-glucosaminidase’ enzymatic activities,
all extensively studied at the biochemical level. These sequences are multi-modular, with
various types of modules, which complicate their alignment. Clustering such protein
sequences using the alignment-dependent algorithms thus becomes problematic. This
encouraged us to perform a clustering on this particular group of the GH2 subfamily, to
compare the behaviour of both algorithms CLUSS2 and CLUSS with BlastClust,
TRIBE–MCL and gSPC in order to validate the use of CLUSS2 on the hard-to-align
proteins. An overview of the results is given in Table 8, with a detailed discussion below.
The corresponding names and database entries of the 33 (α/β)8-barrel proteins group are
indicated on the CLUSS website.

The 33 (α/β)8-barrel proteins were subdivided by CLUSS2 and CLUSS into five
subfamilies, corresponding to their known biochemical activities. However, contrarily to
CLUSS, which has classified the two proteins MaC and MaT with the first cluster,
CLUSS2 classified all the 33 (α/β)8-barrel proteins in the same subfamilies obtained
by Côté et al. (2006) that in turn are supported by the structure-function studies of
Fukamizo et al. (2006). This shows the superiority of CLUSS2 comparing to
CLUSS in clustering protein sequences. The first cluster includes enzymes annotated as
‘β-mannosidase’ activities; the second cluster includes enzymes with ‘β-mannosidase’
activities; the third cluster includes enzymes with ‘β-glucuronidase’ activities; the forth
cluster includes enzymes with ‘β-galactosidase’ activities; the fifth cluster includes
enzymes with ‘exo-β-D-glucosaminidase’ activities. While the other algorithms do not
succeed to obtain clustering results that correspond to the functional classification of the
33 (α/β)8-barrel proteins group obtained by Côté et al. (2006) and Fukamizo et al. (2006).
Since, there are a number of well classified proteins (i.e., GaA, GaK, GaC, CsAo, CsN
and CsAn) which could not be classified by BlastClust, and a number of proteins which
were wrongly classified by TRIBE-MCL and gSPC, for details see Table 8.

 138 A. Kelil et al.

Table 8 Clustering results of the 33 (α/β)8-barrel proteins group

No. Proteins Côté/Fukamizo CLUSS2 CLUSS BlastClust T-MCL gSPC
1 UnA 1 1 1 1 1 1
2 UnBv 1 1 1 1 1 1
3 UnBc 1 1 1 / 1 1
4 UnBm 1 1 1 1 1 1
5 UnBp 1 1 1 1 1 1
6 UnR 1 1 1 1 1 1
7 MaA 2 2 1 2 2 1
8 MaB 2 2 1 2 2 1
9 MaH 2 2 1 2 1 1
10 MaM 2 2 2 2 1 1
11 MaC 2 2 2 2 1 1
12 MaT 2 2 2 2 2 1
13 GIC 2/3 2 2 2 2 1
14 GIE 3 3 3 3 2 2
15 GIH 3 3 3 3 2 2
16 GIL 3 3 3 3 2 2
17 GIM 3 3 3 3 2 2
18 GIF 3 3 3 3 2 2
19 GIS 3 3 3 3 2 2
20 GaEco 4 4 4 4 2 2
21 GaA 4 4 4 / 2 2
22 GaK 4 4 4 / 2 2
23 GaC 4 4 4 / 2 2
24 GaEcl 4 4 4 4 2 2
25 GaL 4 4 4 4 2 2
26 CsAo 5 5 5 / 2 3
27 CsS 5 5 5 5 2 3
28 CsG 5 5 5 5 2 3
29 CsM 5 5 5 5 2 3
30 CsN 5 5 5 / 2 3
31 CsAn 5 5 5 / 2 3
32 CsH 5 5 5 5 2 3
33 CsE 5 5 5 5 2 3

The symbol ‘/’ means that the corresponding algorithm (column) was not able to classify
the corresponding protein (row) with any one of the other proteins (i.e., orphan protein).

5 Conclusion

Our new similarity measure tSMS makes it possible to measure the similarity between
protein sequences much more quickly and effectively than SMS – especially for
protein datasets that include proteins with a relatively large number of biochemical

 CLUSS2: an alignment-independent algorithm for clustering protein 139

activities – based solely on the conserved motifs, with a certain tolerance to mismatches.
Its major advantage over the alignment-dependent approaches is that it gives significant
results with protein sequences independent of their alignability, making it effective on
both easy-to-align and hard-to-align protein sequences. These properties are inherited by
CLUSS2, our new clustering algorithm, which uses tSMS as its similarity measure.
Compared to CLUSS, our new clustering algorithm CLUSS2 is a much more effective
clustering algorithm for protein sets with respect to the number of biological activities.
It more accurately highlights the characteristics of the biochemical activities of the
clustered protein sequences than do CLUSS and several mainstream alignment-dependent
algorithms.

So far, our similarity measure tSMS has been based on pre-determined substitution
matrices. A possible future development is to propose an approach to automatically
compute the weights of the matched motifs instead of relying on pre-calculated
substitution scores.

References
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) ‘Basic local alignment

search tool’, J. Mol. Biol., Vol. 215, No. 3, pp.403–410.
Berry, M.W. and Fierro, R.D. (1996) ‘Low-rank orthogonal decompositions for information

retrieval applications’, Numerical Linear Algebra with Applications, Vol. 3, No. 4,
pp.301–327.

Cole, R., Kopelowitz, T. and Lewenstein, M. (2006) ‘Automata, languages and programming’,
33rd International Colloquium, ICALP 2006, Proceedings, Part I, Chapter Suffix Trays and
Suffix Trists: Structures for Faster Text Indexing, Venice, Italy, 10–14 July, pp.358–369.

Côté, N., Fleury, A., Dumont-Blanchette, E., Fukamizo, T., Mitsutomi, M. and Brzezinski, R.
(2006) ‘Two exo-β-D-glucosaminidases/exochitosanases from actinomycetes define
a new subfamily within family 2 of glycoside hydrolases’, Biochem. J., Vol. 394, No. Pt 3,
pp.675–686.

Coutinho, P.M. and Henrissat, B. (1999) ‘Recent advances in carbohydrate bioengineering’,
Chapter Carbohydrate-Active Enzymes: An Integrated Database Approach, The Royal
Society of Chemistry, Cambridge, pp.312.

Enright, A.J., Dongen, S.V. and Ouzounis, C.A. (2002) ‘An efficient algorithm for large-scale
detection of protein families’, Nucleic Acids Res., Vol. 30, No. 7, pp.1575–1584.

Fukamizo, T., Fleury, A., Côté, N., Mitsutomi, M. and Brzezinski, R. (2006) ‘Exo-beta-D-
glucosaminidase from Amycolatopsis orientalis: Catalytic residues, sugar recognition
specificity, kinetics, and synergism’, Glycobiology, Vol. 16, No. 11, pp.1064–1072.

Golub, G.H. and Loan, C.F.V. (1996) Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, USA.

Higgins, D. (2004) The Phylogenetic Handbook – A Practical Approach to DNA and Protein
Phylogeny, Marco Salemi and Anne-Mieke Vandamme, Chapter Multiple Alignment,
pp.45–71.

Kelil, A., Wang, S. and Brzezinski, R. (2007a) ‘A new alignment-independent algorithm’,
IEEE 7th BIBE, Conference Center at Harvard Medical School, Cambridge, Boston,
Massachusetts, USA.

Kelil, A., Wang, S., Brzezinski, R. and Fleury, A. (2007b) ‘CLUSS: clustering of protein sequences
based on a new similarity measure’, BMC Bioinformatics, Vol. 8, p.286.

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P., Zipursky, L.
and Darnell, J. (2005) Molecular Cell Biology, W.H. Freeman and Co., New York and
Basingstoke.

 140 A. Kelil et al.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V.,
Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S.,
Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and Natale, D.A. (2003) ‘The COG
database: an updated version includes eukaryotes’, BMC Bioinformatics, Vol. 4, p.41.

Tetko, I.V., Facius, A., Ruepp, A. and Mewes, H. (2005) ‘Super paramagnetic clustering of protein
sequences’, BMC Bioinformatics, Vol. 6, p.82.

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) ‘CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice’, Nucleic Acids Res., Vol. 22, No. 22, pp.4673–4680.

Weiner, P. (1973) ‘Linear pattern matching algorithm’, 14th Symposium on Switching and
Automata Theory, IEEE Computer Society, ed., Los Alamitos, CA, pp.1–11.

