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Abstract: CLUSS is an algorithm proposed for clustering both alignable and 
non-alignable protein sequences. However, CLUSS tends to be ineffective  
on protein datasets that include a large number of biochemical activities.  
To overcome this difficulty, we propose in this paper a new algorithm, named 
CLUSS2 that scales better with the increase of the number of biochemical 
activities. CLUSS2 differs from CLUSS in many ways including protein 
sequences representation, conserved motifs extraction and time efficiency.  
Our experiments show that CLUSS2 more accurately highlights the functional 
characteristics of the clustered families, especially for those with a large 
number of biochemical activities. 
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1 Introduction 

To predict the biochemical activity of a newly sequenced or not yet characterised  
protein sequence, it is necessary to compare its biochemical properties to those of 
functionally well-characterised protein sequences, to assign this protein to one of  
the protein families. However, this is not sufficient to attribute a biochemical activity  
to the protein with a high degree of confidence, since a single family can include a 
number of biochemical activities. A possible solution for assessing the differences in 
cases where protein sequences from the same family have different activities is 
clustering. The literature reports many clustering approaches to the task of grouping 
protein families into subfamilies of protein sequences that are functionally more closely 
related. However, clustering protein sequences remains a difficult challenge, especially 
for sequences whose alignment is not biologically validated (i.e., hard-to-align or totally 
non-alignable sequences), such as tandem-repeat, multi-domain and circular-permutation 
proteins, for which alignment-dependent algorithms do not yield biologically plausible 
clustering results. The main reason is that these algorithms use an alignment process 
based on matching motifs in corresponding positions, whereas non-alignable proteins 
often have similar or conserved domains in non-corresponding positions. A more detailed 
discussion on why these proteins are difficult to align and hard to cluster is given in  
Kelil et al. (2007a). To the best of our knowledge, the only alignment-independent 
clustering algorithm which is effective on both alignable and non-alignable protein 
sequences is the CLUSS algorithm which we proposed recently in Kelil et al. (2007b). 

CLUSS is based on a measure named SMS which we designed specifically to 
compute the similarity between two protein sequences. The SMS measure depends on 
identical matched motifs and is effective for both alignable and non-alignable protein 
sequences, a property that plays a key role in CLUSS. Compared to alignment-dependent 
algorithms, CLUSS highlights the characteristics of the biochemical activities and 
modular structures of the clustered protein sequences. However, it has a tendency to be 
less effective when applied to large protein datasets with many biochemical activities. 
CLUSS also suffers from another problem. Despite the use of optimisation techniques to 
speed up the matching of motifs, it is still not possible to reduce the worst-case 
complexity to a linear time in the SMS computation, which remains slow, especially for 
large protein datasets. All these factors prevent CLUSS from being effective on large 
protein datasets. 

In this paper we propose a new algorithm for clustering protein sequences, which we 
have named CLUSS2. CLUSS2 is similar to CLUSS in that both are hierarchical 
clustering algorithms and both aim primarily to cluster hard-to-align sequences. 
However, CLUSS2 differs significantly from CLUSS in two main respects. First, 
CLUSS2 is based on a new measure tSMS that extends SMS for computing similarity 
between protein sequences. The tSMS measure allows the matching of similar motifs, 
rather than imposing identical matches as in SMS. tSMS is computed based on a new 
algorithm for extracting matched motifs, which is the main reason for its increased 
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efficiency. The second major difference from CLUSS is that CLUSS2 applies Singular 
Value Decomposition (SVD) techniques to the similarity matrix obtained from tSMS, to 
create a representation of each protein sequence in a vector space. This transformation 
allows the application of vector operations during the clustering process. One important 
advantage is that this yields a representative (centroid) for each cluster; another is the 
possibility of further reducing the runtime by using approximate representations. 
CLUSS2 is much faster and more effective than CLUSS, especially for large protein 
datasets with a large number of biological activities. 

To show the effectiveness of CLUSS2, we performed extensive clustering 
experiments on the COG and KOG databases, which contain phylogenetic classifications 
of proteins encoded in complete genomes (Tatusov et al., 2003), and also on reference 
sequence proteins encoded by complete prokaryotic and chloroplast plasmids and 
genomes, known as the Protein Clusters (PC) database, available at the NCBI website: 
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/CLUSTERS/. To demonstrate its ability to deal 
with hard-to-align sequences, we tested it on the (α/β)8 barrel proteins group, belonging 
to the Glycoside Hydrolases (GH) family (Coutinho and Henrissat, 1999). In addition,  
we carried out experimental comparisons with a variety of mainstream algorithms 
including the BlastClust program (Dondoshansky and Wolf, unpublished), which belongs 
to the standalone BLAST package used to cluster either protein or nucleotide sequences, 
available from the NCBI website ftp://ftp.ncbi.nih.gov/blast/, and the well-known 
algorithms TRIBE-MCL (Enright et al., 2002) and gSPC (Tetko et al., 2005). These 
comparisons were made on hard-to-align and easy-to-align protein sequences. The results 
of these experiments show advantages of CLUSS2 in yielding more significant clusters of 
proteins with similar functional activities, especially for large protein datasets with a 
variety of biochemical activities. 

2 The new similarity measure tSMS 

The measure SMS, used in CLUSS to measure the similarity of a pair of protein 
sequences X and Y, was defined based on a key set of strictly matched subsequences  
(i.e., identical amino acids) of maximal length between the sequences X and Y, denoted 
by EX,Y. Unlike other word-counting methods, which measure similarity by detecting 
multiple occurrences and handling them according to their matching scores, as in the 
well-known algorithm Blast (Altschul et al., 1990), which uses the SHP criterion,  
SMS takes into account both the position and the inclusion of the matched subsequences. 

The fact that we utilise a single similarity value which includes all of the identical 
matches as well as matched motifs from positions which, while non-equivalent according 
to the primary structure, might well be equivalent when viewed in terms of secondary and 
tertiary structure, allows us to take advantage of certain information included in the 
secondary and tertiary structure. Certainly, taking into account only identical motifs may 
lead us to overlook some important information in computing similarity. But at the same 
time, it also filters out noise (i.e., similarities due to chance) from our similarity measure. 
We believe that for protein datasets which include a small number of biochemical 
activities, the overlooked information is relatively insignificant compared with the  
noise-filtering effect. 

The experimental results reported in our recent studies (Kelil et al., 2007a, 2007b) 
seem to confirm the advantage of this strategy for such datasets. On the other hand, these 
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studies show that the strategy is not very efficient on protein datasets with a large number 
of biochemical activities. This suggests that the proportion of overlooked similarity 
information may become more significant as the number of biochemical activities 
increases, undermining the noise-filtering advantage.  

The similarity measure SMS also suffers from problems of speed. Although we 
utilised a technique to speed up the extraction of significant motifs, the variable length of 
the matched sequences made it not impossible to reduce the worst-case complexity to a 
linear time using this technique. 

In this paper, we propose a new similarity measure named for ‘tolerant SMS’ (tSMS) 
which generalises SMS in terms of tolerance to mismatches and scales well with increase 
in the number of biochemical activities. Also, tSMS is much faster than SMS; this is 
made possible by the optimisation techniques used, which have reduced the worst-case 
complexity to a linear time. 

2.1 The matching set 

We will use |•| to express the length of a sequence. Let X and Y be two protein sequences 
whose similarity we want to measure, belonging to the protein family F which contains  
N protein sequences. Let x and y be two subsequences of the same length, belonging to  
X and Y, respectively. We use Γx,y to represent the matched subsequence of x and y.  
We use l to represent the minimum number of matched residues between x and y that Γx,y 
must include; at the same time, l is also the maximum number of non-matched residues 
allowed in Γx,y. A detailed discussion on the choice of the value of l was given in  
Kelil et al. (2007a). The length l is used with the aim of detecting and utilising the 
significant motifs best conserved during evolution and minimising the influence of motifs 
that occur by chance. We use m (chosen by the user) to represent the minimum 
substitution score that two matched residues must have in order to be considered similar, 
or to be considered allowable in Γx,y. For X and Y, we define the set of all matched 
subsequences Γx,y denoted by ,

, ,l m
X YE  as follows: 
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 Γ ≠ ≥= Γ
 ∀ ≤ Γ ∈ ∧ ∈ ⇒ ≥
 ′ ′∀ ∈ ∧ Γ ≠ Γ ⇒ ⊄ ∨ ⊄

 (1) 

Here m is one of the substitution matrices (chosen by the user) and i is used to 
identify the ith position in a subsequence. The variables xi and yi are simply the ith amino 
acids belonging to subsequences x and y, respectively. M(xi, yi) is the substitution score of 
the ith amino acids of the subsequences x and y. The constant m is a minimum value that 
the score between amino acids xi and yi must have to be considered as matched.  
The symbols x′ and y′ in the formula are simply used as variables, in the same way  
as x and y. The expression (.⊄.) means that the element to the left of the symbol is not 
included in the one to the right, either in terms of the composition of the subsequences or 
in terms of their respective positions in their protein sequence. The role of l is to detect 
and make use of the significant motifs best conserved during evolution and to minimise 
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the influence of the motifs that occur by chance. The matching set ,
,

l m
X YE  thus includes the 

significant motifs that correspond to matched protein subsequences that are more likely to 
be similar due to conservation phenomena and not due to chance. The matching set will 
be used to compute the matching score of the pair of sequences. Here are a few detailed 
explanations about Formula 1: 

• ,Γx y x y= =  means that the matched motif Γx,y as well as the matched 

subsequences x and y include the same number of amino acids. 

• ,card({ })
i ix y i ix y lΓ = ≥  means that the matched motif Γx,y must include at least l 

identical similar residues according to the threshold m. 

• ,card({Γ })
i ix y i ix y l≠ ≤  means that the matched motif. Γx,y can include at most l 

non-identical residues according to the threshold m. 

• ,Γx y l≥  means that the matched subsequences Γx,y must have the minimum length l. 

• , , ( ) ( ) ( , )x y i i i ii x x y y M x y mΓ∀ ≤ ∈ ∧ ∈ ⇒ ≥  means that the subsequences x and y 

must not include matched residues with a substitution score less than a threshold m. 

• ,
, , , ,( ) ( ) ( ) ( )l m

x y X Y x y x yE x x y y′ ′ ′ ′∀Γ ∈ ∧ Γ ≠ Γ ⇒ ⊄ ∨ ⊄′ ′  means that for any matched 
subsequences Γx,y and ,Γx y′ ′  belonging to ,

, , ,, Γ and Γl m
X Y x y x yE ′ ′  being different implies 

that ,Γx y′ ′  is not included in Γx,y either in terms of the composition of their 
corresponding subsequences or in terms of their respective positions in their protein 
sequences according to the partial order induced by set inclusion. In other words, 
each of the Γx,y in ,

,
l m
X YE  is maximal. 

To summarise, the formula means that the matching set ,
,

l m
X YE  contains all the matched 

subsequences Γx,y of maximal length (i.e., at least l identical matched residues and at most 
l non-identical matched residues) between the sequences X and Y, with a tolerance to 
mismatches determined by m. 

The formula ,
,

l m
X YE  adequately describes some known properties of polypeptides and 

proteins. First, protein motifs (i.e., series of defined residues) determine the tendency of 
the primary structure to adopt a particular secondary structure, a property exploited by 
several secondary-structure prediction algorithms. Such motifs can be as short as four 
residues (for instance, those found in β-turns), but the propensity to form an α-helix or a 
β-sheet is usually defined by longer motifs. Second, our proposal to take into account 
multiple occurrences of a particular motif reflects the fact that sequence duplication is 
one of the most powerful mechanisms of gene and protein evolution. If a motif is found 
twice or more in a protein, it is more probable that it was acquired by duplication of a 
segment from a common ancestor than by acquisition from a distant ancestor. 

2.2 Definition of the similarity measure tSMS 

Our primary concern is to develop an approach that will enable us to cluster hard-to-align 
protein sequences such as circularly-permuted, multi-domain and tandem-repeat protein 
sequences. For such sequences, the alignment-dependent approaches usually fail to yield 
biologically suitable results. In fact, the hard-to-align proteins often have similar and 
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conserved domains in non-equivalent positions in the primary structure, which makes 
them difficult to align. However, these domains might well be in equivalent positions 
when viewed in terms of secondary and tertiary structure. In the absence of explicit 
identification of such positions in our alignment-free approach to similarity computation, 
we adopted the strategy of matching all the conserved domains, even those on  
non-equivalent positions. The reason is that, with a suitable value of the minimum 
threshold ‘l’ for matched motifs, which allows us to detect and make use of the 
significant motifs best conserved during evolution and to minimise the influence of those 
motifs that occur by chance, it is more probable that we will effectively match motifs that 
are similar due to conservation rather than to random phenomena. 

For a protein sequence that comprises a number of significant motifs that were better 
conserved during evolution, each motif contributes in a complex way to provide one or 
more biological functions. A mutation in one of the conserved motifs can significantly 
alter or even eradicate the biological activity of the protein, while in another conserved 
motif it might only slightly decrease the expression of the biological function. So,  
we make use of a substitution matrix to emphasise the fact that each conserved motif can 
be involved to a different degree in a biological activity. 

Let M be a substitution matrix, and Γ matched subsequence belonging to the 
matching set ,

,
l m
X YE  We define a weight W(Γ) for the matched subsequence Γ, to quantify 

its importance compared to all the other matched subsequences of ,
,

l m
X YE  as follows: 

Γ

1

(Γ) (Γ )
i

W M i iΓ
=

= ∑  (2) 

where Γ[i] is the ith amino acid of the matched subsequence Γ, and M(Γ[i], Γ[i]) is the 
substitution score of this amino acid with itself. Here, in order to make our measure 
biologically plausible, we use the substitution concept to emphasise the relation that 
binds one amino acid with itself. The value of M(Γ[i], Γ[i]) (i.e., within the diagonal of 
the substitution matrix) estimates the rate at which each possible amino acid in a 
sequence remains unchanged over time. For the pair of sequences X and Y, we define the 
matching score SX,Y, understood as representing the substitution relation of the conserved 
regions in both sequences, as follows: 

,
,

, ( ) / max( , ).
l m
X Y

X Y
r E

S W X YΓ
∈

= ∑  (3) 

Which is our new similarity measure tSMS for a pair of protein sequences X and Y. 

2.3 Conservability vs. mutability 

The scoring of identical matches with a substitution matrix in SMS reflects the 
conservability of matched residues. The term conservability is more appropriate than 
mutability. The nuance is significant for SMS. In fact, protein sequences to be compared 
contain conservability and mutability information. In the case of easy-to-align protein 
sequences, both conservability and mutability information can be obtained, while in the 
case of hard-to-align protein sequences mutability information is difficult to obtain.  
This is due to some known problems, such as the problem of repeats and the problem of 
substitutions; for details see Higgins (2004). To the best of our knowledge, existing 
alignment-based algorithms fail to effectively capture conservability and mutability 
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information in hard-to-align protein sequences. On the other hand, the experimental 
results reported in Kelil et al. (2007a) show that the use of only conservability 
information allows SMS to deal with hard-to-align sequences better than the  
alignment-based algorithms. Experimental results also show that SMS handles  
easy-to-align protein sequences equally well as the alignment-based algorithms. This 
suggests that the utility of conservability might be much more significant than is 
generally believed. However, the experiments conducted showed that, as the number of 
biochemical activities increases, the strategy of capturing only the conservability 
information becomes increasingly insufficient to obtain an accurate similarity measure. 
Therefore, the use of mutability information becomes inevitable to overcome this 
drawback. In tSMS, both conservability and mutability information are captured and used 
to measure the similarity. 

2.4 Computational complexity 

To compute tSMS, we have made use of a variant of the data structure known as the 
‘Suffix Tree’ (Weiner, 1973), developed by Cole et al. (2006) and named the  
‘Suffix Tray’. The Suffix Tree is a well-known approach to solving the problem of string 
matching in linear time. Given the question of how many occurrences of a pattern P there 
are in a string T and where they occur, the Suffix Tree allows an answer to be generated 
in ( )O P z T+  time and with ( )O T  space, where z is the number of occurrences of the 
pattern P in the text T. With the Suffix Tray, on the other hand, the same task can be 
performed in ( log )O P + ∑  with the same space complexity ( )O T  as for the Suffix 
Tree. Here ∑ is the alphabet size. For our case ∑ = 20, which is the number of amino 
acids. The fact that the Suffix Tray performs the matching in a time independent of T  is 
very advantageous for speeding up our algorithm. 

Let X and Y be a pair of protein sequences to be compared. We start by building the 
Suffix Trays corresponding to the individual sequences, TX and TX, which takes time and 
space O(|X|) and O(|X|), respectively. These Suffix Trays are trees of O(|X|) and O(|X|) 
nodes, containing all the suffixes of the protein sequences X and Y, respectively. Instead 
of matching X and Y, which takes time ( )O X Y×  we perform the same task by 
matching only the suffixes of TX with those of TY, or vice-versa, as follows: 

Let TX = {x1, x2, … xt} be the set of all suffixes of TX, where t is the number of 
possible suffixes. Finding all the occurrences (i.e., exact matching) of a suffix xi out of 
the Suffix Tray TY takes time ( log 20).O P +  Let k  be the average number of possible 
matches of all amino acids according to the chosen value of m (in Formula 1) and the 
chosen substitution matrix. If we consider that we allow a restricted number of  
matches per residue (see Table 1) and a restricted number of mismatches per  
matched motif (i.e., ≤l), in the worst case, there exist lk  possible transformations  
of xi, which implies that the pattern xi will have to be matched lk  times with the  
Suffix Tray TY. This has a time complexity of ( log 20).lk O P +  Since both k and l  
are constants, and are usually small values, the coefficient lk  is also a constant. 
Performing the matching between all TX suffixes and the Suffix Tray thus takes time 

1 2( log 20) ( log 20) ( log 20) ( ),l l l l
tk O x k O x k O x k O X+ + + + + + ="  which is also 

linear. 
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Table 1 Number of possible matches for each amino acid with different values of m 

BLOSUM62  PAM250 
Amino acids m = 0 m = 1 m = 2 m = 0 m = 1 m = 2 

A 6 2 1 10 5 1 
C 2 1 1 3 1 1 
D 5 3 2 10 6 4 
E 8 4 3 10 5 3 
F 6 3 2 6 4 3 
G 4 1 1 7 4 1 
H 6 3 2 9 6 4 
I 5 4 3 5 5 5 
K 6 4 2 10 4 2 
L 5 4 3 5 5 5 
M 6 4 2 7 4 4 
N 10 4 1 11 7 3 
P 1 1 1 7 3 1 
Q 9 4 2 9 7 4 
R 6 3 2 9 5 4 
S 9 4 1 11 6 1 
T 5 2 1 11 3 1 
V 6 4 2 6 4 4 
W 3 3 2 4 2 2 
Y 4 4 4 5 2 2 

Average k  5.6 3.1 1.9 7.8 4.4 2.7 

Depending on the m value (i.e., column), each amino acid (i.e., row) has a limited number 
of possible matches; each k  value is the average of the corresponding column values. 

3 The new clustering algorithm CLUSS2 

CLUSS2 is composed of three main stages. The first one consists in building a pairwise 
similarity matrix S using our new similarity measure tSMS. The second consists in 
building a phylogenetic tree according to this matrix, using a new hierarchical clustering 
approach based on spectral decomposition. The third consists in identifying subfamily 
nodes from which leaves are grouped into subfamilies. 

In the algorithm CLUSS (Kelil et al., 2007b), we used a classical clustering approach 
by directly making use of the pairwise similarity matrix. In the present version we have 
developed a new and original hierarchical algorithm, inspired by the LSA approach, for 
more details see Berry and Fierro (1996). We take advantage of this approach by 
extracting global information from a large number of protein sequences rather than 
carrying out a pairwise comparison. We have chosen to keep the name CLUSS, since 
both versions have the same basic principles, and they are inspired from the same idea. 
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3.1 Stage 1: Similarity matrix 

Using one of the known substitution score matrices, such as BLOSUM62 or PAM250, 
and our new similarity measure tSMS, we compute S, the N × N pairwise similarity 
matrix, where N is the number of sequences of the protein family F to be clustered, and 
Si,j is the similarity between the ith and the jth protein sequences of F. By using tSMS, the 
construction of the pairwise similarity measure matrix S becomes much faster, since we 
transform all the N protein sequences into Suffix Trays only once before the pairwise 
matching of the protein sequences. Both the transformation of each protein sequence and 
the matching of two protein sequences take linear time with respect to sequence length, 
as seen in Section 2.1. 

3.2 Stage 2: Phylogenetic tree 

Using spectral decomposition on the pairwise similarity matrix S, we obtain a set of 
vectors. Each of the vectors is used to represent a protein sequence in the new vector 
space resulting from the decomposition of S. Such a representation is valid in the sense 
that the similarity between each pair of sequences from the original similarity matrix S is 
equal or approximately equal to the similarity between the corresponding vectors 
measured by the inner product function. This representation facilitates the subsequent 
(hierarchical) clustering. In fact, a cluster will be represented by only one vector; cluster 
merging can be easily performed by adding two vectors; and the similarity between two 
clusters can then be estimated by the cosine similarity function. This stage is composed 
of three steps, as follows. 

3.2.1 Step1: Spectral decomposition of the similarity matrix S 

We will utilise the theorem in linear algebra, which states that any R × C matrix A whose 
number of rows R is greater than or equal to its number of columns C can be written as 
the product of an R × C column-orthogonal matrix U, a C × C diagonal matrix Z with 
non-negative elements, which are the singular values, and the transpose of an R × R 
orthogonal matrix V. This decomposition is named the Singular Value Decomposition 
(SVD). The matrix A can be written as follows: 

.TA U Z V= × ×  (4) 

We apply the SVD to the squared pairwise similarity matrix SN×N, which is 
decomposed into the product of three N × N matrices U, Z and V. The first of these, U, is 
a left singular matrix describing the original row entities as vectors of derived orthogonal 
factor values; the second, Z, is a diagonal matrix containing non-negative scaling values; 
and the third, V, is a right singular matrix describing the original column entities in the 
same way as the first matrix. Since the matrix Z contains non-negative singular values, 
the SVD of S can be written in the following form: 

( ) ( ).TS U Z Z V= × × ×  (5) 

For the special case where S is a square and symmetric matrix with a diagonal 
including much larger values than the rest of the matrix (as is the case here), the matrix S 
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is very likely to be a semi-definite positive matrix, or at least very close to that. We can 
thus write Formula 6 in the form: 

( ) ( ).TS U Z Z U× × ×�  (6) 

We can write: 

( ) ( ) .TS U Z U Z× × ×�  (7) 

We define an N × N matrix = ,E U Z×  for which each row = .i iE U Z×   
Now each protein sequence i belonging to the protein family F to be clustered is 
represented by the vector Ei in the new vector space, mapped by the matrix E. Therefore, 
the similarity measure SX,Y between a pair of sequences X and Y is now equal or 
approximately equal to the inner product <EX, EY>. The idea of mapping the protein 
sequences onto a vector space is based on the conservability of distance.  
This transformation allows us to apply vector operations during the clustering process 
and obtain (and maintain) a representative for each subcluster. The transformation, as 
discussed in LSA, also allows us to take advantage of transitivity in the similarities 
between pairs of proteins (documents, in LSA). 

It is possible to take further advantage of this representation. In fact, by taking into 
account only the K (where K ≤ N) largest non-negative singular values from the N × N 
matrix Z, and their corresponding singular vectors from the N × N matrices U and V,  
we get the rank K approximation of S with the smallest error according to the Frobenius 
norm (Golub and Loan, 1996). The matrices U, Z and V are reduced to N × K, K × K, and 
N × K matrices, respectively. Thus, the spectral decomposition approach maps the protein 
vectors onto a new multidimensional space in which the corresponding vectors are the 
rows of the N × K matrix E. Reducing the K value significantly speeds up the clustering 
process. In the experiments carried out in this paper, we have not exploited the strategy of 
reducing the value of K, since we set it to K = N because we wanted to concentrate our 
efforts on the accuracy of the new clustering approach adopted in CLUSS2. However,  
we will do it extensively in a future work. 

3.2.2 Step 2: Phylogenetic tree 

Starting from vectors E1, E2, …, EN, each of which is considered as the root node of a 
subtree containing only one node, we initialise the similarity between any pair of nodes 
by the cosine product of corresponding vectors. We iteratively join a pair of root nodes in 
order to build a bigger subtree. At each iteration, a pair of root nodes is selected if they 
are the most similar root nodes (i.e., corresponding vectors have the largest cosine 
product). This process ends when there remains only one subtree, which is the 
phylogenetic tree. 

Now we introduce the concept of co-similarity for ranking the nodes in the 
phylogenetic tree. Let L and R be a pair of nodes (L for left and R for right) belonging to 
the phylogenetic tree. By taking into account information about the neighbourhood 
around each of the nodes L and R, the concept of co-similarity reflects the cluster 
compactness of all the sequences (i.e., leaf nodes) in the subtree. In fact, its value is 
inversely proportional to the within-cluster variance. As the subtree becomes larger, the 
co-similarity tends to become smaller, which means that the sequences within the subtree 
become less similar and the difference (i.e., separation) between sequences in different 
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clusters becomes less significant. In simpler terms, the co-similarity of a particular node 
is a measure of the balance between its two child nodes. Before the construction of the 
phylogenetic tree, all co-similarities (of the leaves) are initialised to zero. 

Let L and R be the two most similar root nodes at a given iteration step; they are 
joined together to form a new subtree P (P for parent), which thus has two children, L 
and R, such that EP is its corresponding vector. The new root node P has the following 
definitions: 

|| || || ||and
|| || || ||

L R
P L R P

L R

E EE E E c
E E

×= + =
+

 (8) 

where EL, ER and EP are vectors corresponding to the root nodes L, R and P respectively, 
and cP is the co-similarity of P. The norms ||EL|| and ||ER|| depend on the number and 
proximity of leaves belonging to the subtrees L and R, respectively, and they measure 
how well F is represented by each one of these particular subtrees. According to this 
definition, the value of a norm is large if the corresponding subtree is more representative 
and small if it is less representative. 

We assign a ‘length’ value to each of the two branches connecting L and R to P. 
These values are the estimate of the phylogenetic distance from the individual nodes L 
and R to their parent P in the tree. This distance has no strict mathematical sense; it is 
merely a measure of the evolutionary distance between the nodes. It is comparative to the 
notion of dissimilarity. We calculate it as follows: 

, ,
|| || || ||and .

|| || || || || || || ||
R L

L P R P
L R L R

E Ed d
E E E E

= =
+ +

 (9) 

3.2.3 Step 3: Separating nodes 

This step is exactly the same as in the CLUSS algorithm. However, we give more details 
about this step here. The CLUSS2 algorithm makes use of a systematic method for 
deciding which subtrees to retain as a trade-off between searching for the highest  
co-similarity values and searching for the largest possible clusters. We first separate all 
the subtrees into two groups, one being the group of low co-similarity subtrees, and the 
other the high co-similarity subtrees. This is done by sorting all possible subtrees in 
increasing order of co-similarity and computing a separation threshold according to the 
maximum interclass inertia method, based on the Koenig-Huygens theorem, which gives 
the relationship between the total inertia and the inertia of each group relative to the 
centre of gravity. In our case we have just two groups, the high co-similarity group and 
the low cosimilarity group. The procedure is described as follows: 

Let D be the set of subtrees, DLow the subset of low co-similarity subtrees, and DHigh 
the subset of high co-similarity subtrees, such that: 

Low High Low High,D D D D D= = ∅∪ ∩  (10) 

Low High, | , .L RL R D L D R D c c∀ ∈ ∈ ∈ ⇒ <  (11) 

The symbols DLow and DHigh are simply used as variables representing all possible 
separations of D according to equations (10) and (11). According to the Koenig-Huygens 
theorem, we calculate the total inertia as follows: 
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( ) ( ) ( )Low High Low High

Low High

2 2

Total i K j D K D
i D j D

I c c c c c c
∈ ∈

= − + − + −∑ ∑  (12) 

where ci and cj are co-similarity values of subtrees i and j belonging to the subsets  
DLow and DHigh, all respectively; and 

HighLow
and DDc c  are means (i.e., centres of gravity) of 

subsets DLow and DHigh, respectively. The best separation of D, the set of sorted subtrees 
on two subsets DLow and DHigh, is given by the maximum value of lTotal. 

3.3 Stage 3: Extracting clusters 

From the subset of high co-similarity subtrees belonging to DHigh, we extract those that 
are largest. A high co-similarity subtree is largest if the following two conditions are 
satisfied: 

• it does not contain any low co-similarity subtree belonging to the subset DLow 

• if it is included in another high co-similarity subtree, the latter contains at least one 
low co-similarity subtree from the subset DLow. 

Each of these largest subtrees corresponds to a cluster and its leaves are then collected 
to form the corresponding cluster. 

4 Experiments 

To illustrate its efficiency, we tested CLUSS2 extensively on a variety of protein datasets 
and compared it both with CLUSS and with several mainstream clustering algorithms. 
We analysed the results obtained for the different tests with support from the literature 
and functional annotations. All the data and results cited in this section are available on 
the CLUSS website http://prospectus.usherbrooke.ca/CLUSS/. To evaluate the quality of 
the clustering results obtained, in our experiments we used the Q-measure that we 
introduced in Kelil et al. (2007b). 

4.1 Benchmarking 

To illustrate the efficiency of CLUSS2 in grouping protein sequences according to their 
functional annotations and biological classifications, we performed extensive tests on the 
widely known databases COG (unicellular organisms), KOG (eukaryotic organisms) and 
PC (microbial protein clusters). The COG and KOG databases include clusters of 
orthologous groups of proteins that were delineated by comparing protein sequences 
encoded in complete genomes, representing major phylogenetic lineages. The PC 
database is a compilation of proteins from the complete genomes of prokaryotes, 
plasmids and organelles that have been grouped and manually curated and annotated 
based on sequence similarity and protein function. 

In order to evaluate CLUSS2 in a statistical manner, we generated three benchmarks 
named A, B and C, each containing three different large sets, such that A = {A1, A2, A3} 
B = {B1, B2, B3} and C = {C1, C2, C3}. The nine sets in these benchmarks have been 
generated in this way; A1, B1 and C1 from the COG database, A2, B2 and C2 from the KOG 
database and A3, B3 and C3 from the PC database. Each set contains 1000 different, large, 
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randomly generated subsets of protein sequences. Each subset contains a large number of 
non-orphan protein sequences (i.e., each protein sequence has at least one similar protein 
sequence from the same functional classification). Each subset in the benchmark  
A contains a number of proteins with at least five biochemical activities. In the 
benchmark B, each subset contains a number of proteins with at least ten biochemical 
activities. And finally, in the benchmark C, each subset contains a number of proteins 
with at least 20 biochemical activities. Details about the generated benchmarks are given 
in Table 2. We tested CLUSS2 and CLUSS on the three benchmarks using both 
substitution matrices BLOSUM62 and PAM250. The obtained results for both matrices 
were very similar. The results obtained are shown in Table 3, and discussed below. 

Table 2 Generated datasets 

COG (A1, B1, C1) KOG (A2, B2, C2) PC (A3, B3, C3) 
Benchmark Av. No. Av. Length Av. No. Av. Length Av. No. Av. Length 
A 298 1087 230 2024 256 815 
B 487 1102 458 2043 449 895 
C 678 1198 696 2076 628 912 

Av. No. is the average number and Av. Length is the average length, of all protein 
sequences within each set (column), in each benchmark (row). 

Table 3 Benchmarking results (Time in seconds) 

COG (A1, B1, C1) KOG (A2, B2, C2) PC (A3, B3, C3) 
Benchmark Algorithm Qm SD Time Qm SD Time Qm SD Time 

CLUSS2 90.32 3.56 11 86.74 3.41 5 96.61 3.86 15 A 
CLUSS 90.56 4.04 27 86.15 4.63 21 96.28 4.67 60 
CLUSS2 92.25 5.12 16 87.34 5.76 9 94.45 5.71 18 B 
CLUSS 90.81 7.87 49 85.16 7.10 39 91.64 7.14 68 
CLUSS2 91.85 7.92 18 86.56 8.45 14 96.11 7.81 21 C 
CLUSS 81.39 9.60 61 77.91 11.09 55 88.68 10.94 92 

Qm is the average Q-measure, SD the standard deviation and Time the average execution 
time, of the clustering results of each set (column) in each benchmark (main row) using 
each CLUSS version (child row). 

4.1.1 Benchmark A with five biological activities (Table 3) 

The average Q-measure (Qm) and the Standard Deviation (SD) values of the clustering 
results obtained for each database (COG, KOG and PC) are essentially equal with 
CLUSS2 and CLUSS. However, the execution times (Time) for each database clearly 
show that CLUSS2 is definitely faster than CLUSS. 

4.1.2 Benchmark B with ten biological activities (Table 3) 

The Qm and SD values of the clustering results obtained for each of the databases show a 
small advantage of CLUSS2 compared to CLUSS. However, the Time values for each 
database show once again that CLUSS2 is faster than CLUSS. 



   

 

   

   
 

   

   

 

   

    CLUSS2: an alignment-independent algorithm for clustering protein 135    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.1.3 Benchmark C with 20 biological activities (Table 3) 

The Qm values of the clustering results obtained for each of the databases using CLUSS2 
are clearly higher than those obtained with CLUSS. Also, the SD values of the clustering 
results obtained for each database using CLUSS2 are visibly lower than those obtained 
with CLUSS. The Time values for each database using CLUSS2 increase much more 
slowly than those obtained using CLUSS. 

The results obtained clearly show that CLUSS2 is indeed effective in grouping 
sequences according to the known functional classification of COG, KOG and PC 
databases more efficiently than CLUSS. Contrary to what was observed for CLUSS, the 
efficiency of the new algorithm CLUSS2 does not notably decrease with an increase in 
the number of biochemical functions included in the clustered protein datasets. Another 
important fact to note is that the optimisation techniques used in the new similarity 
measure tSMS have significantly improved the time efficiency of the clustering process. 

4.2 Comparisons 

To compare the efficiency of CLUSS2 to that of alignment-dependent clustering 
algorithms, we performed tests using CLUSS2, CLUSS, BlastClust, TRIBE-MCL and 
gSPC on the COG, KOG and PC databases. In all of the tests performed, we used the 
widely known protein sequence comparison algorithm ClustalW (Thompson et al., 1994) 
to calculate the similarity measure matrices used by TRIBE-MCL and gSPC. Due to the 
complexity of alignment, these tests were done on three sets of six randomly generated 
subsets, named C1 to C6 for COG, K1 to K6 for KOG and P1 to P6 for PC; each 
generated protein subset includes protein sequences with at least 20 biological activities. 

The results obtained are summarised in Tables 4–6. The experiments show clearly 
that CLUSS2 obtained the best Q-measure, compared to the other algorithms tested. Even 
if we compare the results of CLUSS2 with those of CLUSS, we can see that CLUSS2 has 
obtained better clustering results. This is because each of the subsets tested contains a 
number of proteins with a large number of biological functions (each subset includes 
protein sequences with at least 20 biological functions). Globally, the clusters obtained 
using our new algorithm CLUSS2 correspond better to the known characteristics of the 
biochemical activities and modular structures of the protein sequences according to the 
COG, KOG and PC classifications. The execution times reported in Tables 4–6 for 
algorithm comparison, show clearly that the fastest algorithm is BlastClust, closely 
followed by the CLUSS2 algorithm, and then by CLUSS, while TRIBE-MCL and gSPC, 
which use ClustalW as a similarity measure, are much slower. 

Table 4 Clustering results on the COG database (Time in seconds) 

CLUSS2 CLUSS BlastClust TRIBE-MCL gSPC Protein 
subsets Qm Time Qm Time Qm Time Qm Time Qm Time 
Cl (509) 96.02 33 80.01 109 67.01 20 30.02 422 38.01 451 
C2 (448) 98.07 35 68.13 94 42.07 19 35.01 406 31.02 386 
C3 (486) 95.06 38 87.02 94 61.03 28 51.04 336 57.01 378 
C3 (546) 92.01 36 72.03 114 40.01 22 55.08 479 44.01 492 
C4 (355) 98.04 23 86.04 69 69.01 16 40.01 273 42.01 280 
C5 (508) 96.01 29 63.04 137 35.03 16 57.01 446 36.10 440 
C6 (509) 96.02 33 80.01 109 67.01 20 30.02 422 38.01 451 
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Table 5 Comparison on the KOG database (Time in seconds) 

CLUSS2 CLUSS BlastClust TRIBE-MCL gSPC Protein 
subsets Qm Time Qm Time Qm Time Qm Time Qm Time 

Kl (317) 97.02 61 82.02 242 33.13 41 54.05 790 40.02 843 
K2 (419) 95.02 86 69.02 279 55.02 63 60.01 371 50.01 450 
K3 (383) 91.01 161 76.02 381 69.01 134 30.02 1244 30.02 1348 
K4 (458) 95.02 54 76.05 310 37.01 37 59.02 1315 47.01 1349 
K5 (480) 95.06 60 79.33 324 50.02 34 46.03 1425 43.02 1409 
K6 (388) 93.02 76 80.03 441 32.01 49 49.01 1269 55.04 1336 

Table 6 Clustering results on the PC database (Time in seconds) 

New CLUSS Prev. CLUSS BlastClust TRIBE-MCL gSPC Protein 
subsets Qm Time Qm Time Qm Time Qm Time Qm Time 
P1 (538) 91.02 29 65.01 84 44.01 16 31.01 447 41.02 441 
P2 (392) 94.01 23 73.01 79 31.01 18 35.02 250 57.01 264 
P3 (442) 93.02 31 70.01 84 34.06 14 32.01 316 39.01 390 
P4 (595) 95.02 46 60.01 152 66.01 35 58.50 711 30.02 633 
P5 (561) 91.17 39 81.02 97 68.08 18 54.02 433 34.01 435 
P6 (427) 94.02 22 77.08 75 34.01 16 43.03 410 49.02 399 

4.3 G-Proteins family 

The G-Proteins (for guanine nucleotide binding proteins) that are available at 
http://www.gpcr.org/ belong to the larger family of GTPases. Their signalling mechanism 
consists in exchanging Guanosine Diphosphate (GDP) for Guanosine Triphosphate 
(GTP) as a general molecular function to regulate cell processes, reviewed extensively in 
(Lodish et al., 2004). This family has been the subject of a considerable number of 
publications by researchers around the world, so we considered it a good reference 
classification to test the performance of CLUSS2. The sequences belonging to this family 
(version of October 6, 2007), including the 2604 sequences used in our experiments, are 
available on the CLUSS website. The experimental results obtained using both the 
CLUSS2 and CLUSS algorithms as well as the algorithms BlastClust, TRIBE-MCL and 
gSPC are summarised in Table 7. 

Table 7 Clustering results of the G-Proteins family (Time in seconds) 

New CLUSS Prev. CLUSS BlastClust TRIBE-MCL gSPC 
Protein set Qm Time Qm Time Qm Time Qm Time Qm Time 

G-Proteins 91.78 402 89.32 2199 57.78 372 50.89 32,654 61.45 36,751 

The clustering results for the G-Proteins family show clearly that although this family is 
known to be easy to align, which should have facilitated the clustering task of the 
alignment-dependent algorithms, CLUSS2 yields a clustering with the highest Qm value 
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of all the algorithms tested, nearly followed by CLUSS. Thus, the results obtained by 
CLUSS2 are much closer to the known classification of the G-Proteins family than are 
those of the other algorithms tested. In Table 7, we can make the same observation about 
the execution times of the different algorithms as in Tables 4–6. 

4.4 The 33 (α/β)8-barrel proteins 

To show the performance of CLUSS2 with multi-domain protein families which are 
known to be hard to align and have not yet been definitively aligned, experimental tests 
were performed on the 33 (α/β)8-barrel proteins studied recently by Côté et al. (2006) and 
(Fukamizo et al., 2006), which form a group in Glycoside Hydrolases family 2 (GH2) 
from the Carbohydrate Active Enzymes database (CAZy) located at http://www. 
cazy.org/. The periodic character of the catalytic module known as ‘(α/β)8-barrel’ makes 
these sequences hard to align using classical alignment approaches. The difficulties in 
aligning these modules are comparable to the problems encountered with the alignment 
of tandem-repeats, which have been exhaustively discussed by Higgins (2004).  
The FASTA file and full clustering results of this subfamily are available on the  
CLUSS website. This group of 33 protein sequences includes ‘β-galactosidase’,  
‘β-mannosidase’, ‘β-glucuronidase’ and ‘exo-β-D-glucosaminidase’ enzymatic activities, 
all extensively studied at the biochemical level. These sequences are multi-modular, with 
various types of modules, which complicate their alignment. Clustering such protein 
sequences using the alignment-dependent algorithms thus becomes problematic. This 
encouraged us to perform a clustering on this particular group of the GH2 subfamily, to 
compare the behaviour of both algorithms CLUSS2 and CLUSS with BlastClust,  
TRIBE–MCL and gSPC in order to validate the use of CLUSS2 on the hard-to-align 
proteins. An overview of the results is given in Table 8, with a detailed discussion below. 
The corresponding names and database entries of the 33 (α/β)8-barrel proteins group are 
indicated on the CLUSS website. 

The 33 (α/β)8-barrel proteins were subdivided by CLUSS2 and CLUSS into five 
subfamilies, corresponding to their known biochemical activities. However, contrarily to 
CLUSS, which has classified the two proteins MaC and MaT with the first cluster, 
CLUSS2 classified all the 33 (α/β)8-barrel proteins in the same subfamilies obtained  
by Côté et al. (2006) that in turn are supported by the structure-function studies of 
Fukamizo et al. (2006). This shows the superiority of CLUSS2 comparing to  
CLUSS in clustering protein sequences. The first cluster includes enzymes annotated as 
‘β-mannosidase’ activities; the second cluster includes enzymes with ‘β-mannosidase’ 
activities; the third cluster includes enzymes with ‘β-glucuronidase’ activities; the forth 
cluster includes enzymes with ‘β-galactosidase’ activities; the fifth cluster includes 
enzymes with ‘exo-β-D-glucosaminidase’ activities. While the other algorithms do not 
succeed to obtain clustering results that correspond to the functional classification of the  
33 (α/β)8-barrel proteins group obtained by Côté et al. (2006) and Fukamizo et al. (2006). 
Since, there are a number of well classified proteins (i.e., GaA, GaK, GaC, CsAo, CsN 
and CsAn) which could not be classified by BlastClust, and a number of proteins which 
were wrongly classified by TRIBE-MCL and gSPC, for details see Table 8. 
 
 
 



   

 

   

   
 

   

   

 

   

   138 A. Kelil et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 8 Clustering results of the 33 (α/β)8-barrel proteins group 

No. Proteins Côté/Fukamizo CLUSS2 CLUSS BlastClust T-MCL gSPC 
1 UnA 1 1 1 1 1 1 
2 UnBv 1 1 1 1 1 1 
3 UnBc 1 1 1 / 1 1 
4 UnBm 1 1 1 1 1 1 
5 UnBp 1 1 1 1 1 1 
6 UnR 1 1 1 1 1 1 
7 MaA 2 2 1 2 2 1 
8 MaB 2 2 1 2 2 1 
9 MaH 2 2 1 2 1 1 
10 MaM 2 2 2 2 1 1 
11 MaC 2 2 2 2 1 1 
12 MaT 2 2 2 2 2 1 
13 GIC 2/3 2 2 2 2 1 
14 GIE 3 3 3 3 2 2 
15 GIH 3 3 3 3 2 2 
16 GIL 3 3 3 3 2 2 
17 GIM 3 3 3 3 2 2 
18 GIF 3 3 3 3 2 2 
19 GIS 3 3 3 3 2 2 
20 GaEco 4 4 4 4 2 2 
21 GaA 4 4 4 / 2 2 
22 GaK 4 4 4 / 2 2 
23 GaC 4 4 4 / 2 2 
24 GaEcl 4 4 4 4 2 2 
25 GaL 4 4 4 4 2 2 
26 CsAo 5 5 5 / 2 3 
27 CsS 5 5 5 5 2 3 
28 CsG 5 5 5 5 2 3 
29 CsM 5 5 5 5 2 3 
30 CsN 5 5 5 / 2 3 
31 CsAn 5 5 5 / 2 3 
32 CsH 5 5 5 5 2 3 
33 CsE 5 5 5 5 2 3 

The symbol ‘/’ means that the corresponding algorithm (column) was not able to classify 
the corresponding protein (row) with any one of the other proteins (i.e., orphan protein). 

5 Conclusion 

Our new similarity measure tSMS makes it possible to measure the similarity between 
protein sequences much more quickly and effectively than SMS – especially for  
protein datasets that include proteins with a relatively large number of biochemical 
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activities – based solely on the conserved motifs, with a certain tolerance to mismatches. 
Its major advantage over the alignment-dependent approaches is that it gives significant 
results with protein sequences independent of their alignability, making it effective on 
both easy-to-align and hard-to-align protein sequences. These properties are inherited by 
CLUSS2, our new clustering algorithm, which uses tSMS as its similarity measure. 
Compared to CLUSS, our new clustering algorithm CLUSS2 is a much more effective 
clustering algorithm for protein sets with respect to the number of biological activities.  
It more accurately highlights the characteristics of the biochemical activities of the 
clustered protein sequences than do CLUSS and several mainstream alignment-dependent 
algorithms. 

So far, our similarity measure tSMS has been based on pre-determined substitution 
matrices. A possible future development is to propose an approach to automatically 
compute the weights of the matched motifs instead of relying on pre-calculated 
substitution scores. 
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